Penn ESE680-002 Spring2007 -- DeHon 1 ESE680-002 (ESE534): Computer Organization Day 10: February 12, 2007 Empirical Comparisons.

Slides:



Advertisements
Similar presentations
Commercial FPGAs: Altera Stratix Family Dr. Philip Brisk Department of Computer Science and Engineering University of California, Riverside CS 223.
Advertisements

Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 14: March 19, 2014 Compute 2: Cascades, ALUs, PLAs.
Lecture 9: Coarse Grained FPGA Architecture October 6, 2004 ECE 697F Reconfigurable Computing Lecture 9 Coarse Grained FPGA Architecture.
CS294-6 Reconfigurable Computing Day 5 September 8, 1998 Comparing Computing Devices.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 21: April 2, 2007 Time Multiplexing.
CS294-6 Reconfigurable Computing Day 6 September 10, 1998 Comparing Computing Devices.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 15: March 12, 2007 Interconnect 3: Richness.
Caltech CS184a Fall DeHon1 CS184a: Computer Architecture (Structures and Organization) Day10: October 25, 2000 Computing Elements 2: Cascades, ALUs,
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 20: March 28, 2007 Retiming 2: Structures and Balance.
Caltech CS184a Fall DeHon1 CS184a: Computer Architecture (Structures and Organization) Day8: October 18, 2000 Computing Elements 1: LUTs.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 9: February 7, 2007 Instruction Space Modeling.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 21: April 15, 2009 Routing 1.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 13: February 26, 2007 Interconnect 1: Requirements.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 26: April 18, 2007 Et Cetera…
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 11: February 14, 2007 Compute 1: LUTs.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 19: April 9, 2008 Routing 1.
CS294-6 Reconfigurable Computing Day 2 August 27, 1998 FPGA Introduction.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 18: February 21, 2003 Retiming 2: Structures and Balance.
CS294-6 Reconfigurable Computing Day 14 October 7/8, 1998 Computing with Lookup Tables.
Penn ESE Spring DeHon 1 FUTURE Timing seemed good However, only student to give feedback marked confusing (2 of 5 on clarity) and too fast.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 5: January 24, 2007 ALUs, Virtualization…
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 12: February 21, 2007 Compute 2: Cascades, ALUs, PLAs.
Field Programmable Gate Array (FPGA) Layout An FPGA consists of a large array of Configurable Logic Blocks (CLBs) - typically 1,000 to 8,000 CLBs per chip.
Octavo: An FPGA-Centric Processor Architecture Charles Eric LaForest J. Gregory Steffan ECE, University of Toronto FPGA 2012, February 24.
EKT303/4 PRINCIPLES OF PRINCIPLES OF COMPUTER ARCHITECTURE (PoCA)
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 13: February 4, 2005 Interconnect 1: Requirements.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 11: March 3, 2014 Instruction Space Modeling 1.
Open Discussion of Design Flow Today’s task: Design an ASIC that will drive a TV cell phone Exercise objective: Importance of codesign.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 9: February 24, 2014 Operator Sharing, Virtualization, Programmable Architectures.
CBSSS 2002: DeHon Costs André DeHon Wednesday, June 19, 2002.
J. Christiansen, CERN - EP/MIC
Penn ESE370 Fall Townley & DeHon ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 14: October 1, 2014 Layout and.
FPGA-Based System Design: Chapter 3 Copyright  2004 Prentice Hall PTR FPGA Fabric n Elements of an FPGA fabric –Logic element –Placement –Wiring –I/O.
FPGA-Based System Design: Chapter 3 Copyright  2004 Prentice Hall PTR Topics n FPGA fabric architecture concepts.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 7: February 6, 2012 Memories.
Penn ESE370 Fall Townley & DeHon ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 5, 2011 Layout and.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 7: January 24, 2003 Instruction Space.
EKT303/4 PRINCIPLES OF PRINCIPLES OF COMPUTER ARCHITECTURE (PoCA)
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 30: November 19, 2010 Crosstalk.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 13: February 20, 2002 Routing 1.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 13: March 3, 2015 Routing 1.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 33: November 20, 2013 Crosstalk.
Penn ESE534 Spring DeHon ESE534: Computer Organization Day 15: March 24, 2014 Empirical Comparisons.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 5: February 1, 2010 Memories.
Caltech CS184a Fall DeHon1 CS184a: Computer Architecture (Structures and Organization) Day7: October 16, 2000 Instruction Space (computing landscape)
ESS | FPGA for Dummies | | Maurizio Donna FPGA for Dummies Basic FPGA architecture.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 8: January 27, 2003 Empirical Cost Comparisons.
Penn ESE534 Spring DeHon 1 ESE534 Computer Organization Day 9: February 13, 2012 Interconnect Introduction.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 11: January 31, 2005 Compute 1: LUTs.
Penn ESE534 Spring DeHon ESE534: Computer Organization Day 14: March 12, 2012 Empirical Comparisons.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 11: February 20, 2012 Instruction Space Modeling.
FPGA-Based System Design: Chapter 3 Copyright  2004 Prentice Hall PTR Topics n FPGA fabric architecture concepts.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 8: February 19, 2014 Memories.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 22: April 16, 2014 Time Multiplexing.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 10: January 28, 2005 Empirical Comparisons.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 21: April 12, 2010 Retiming.
ESE532: System-on-a-Chip Architecture
سبکهاي طراحي (Design Styles)
ESE534: Computer Organization
ESE534: Computer Organization
ESE532: System-on-a-Chip Architecture
CS184a: Computer Architecture (Structure and Organization)
ESE534: Computer Organization
ESE534: Computer Organization
ESE534: Computer Organization
CS184a: Computer Architecture (Structure and Organization)
ESE534: Computer Organization
ESE534: Computer Organization
ESE534: Computer Organization
Reconfigurable Computing (EN2911X, Fall07)
Presentation transcript:

Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 10: February 12, 2007 Empirical Comparisons

Penn ESE Spring DeHon 2 Last Time Instruction Space Modeling

Penn ESE Spring DeHon 3 Today Empirical Data –Custom Gate Array Std. Cell Full –FPGAs –Processors –Tasks

Penn ESE Spring DeHon 4 Empirical Comparisons

Penn ESE Spring DeHon 5 Empirical Ground modeling in some concretes Start sorting out –custom vs. configurable –spatial configurable vs. temporal

Penn ESE Spring DeHon 6 Full Custom Get to define all layers Use any geometry you like Only rules are process design rules ESE570

Penn ESE Spring DeHon 7 Standard Cell Area invnand3AOI4invnor3Inv All cells uniform height Width of channel determined by routing Cell area

Penn ESE Spring DeHon 8 Standard Cell Area invnand3AOI4invnor3Inv All cells uniform height Width of channel determined by routing Cell area Identify the full custom and standard cell regions on 386DX die

Penn ESE Spring DeHon 9 MPGA Metal Programmable Gate Array –Resurrected as “Structured ASICs” …and already dead?... Structured ASICs: what happened at LSI Logic? –EDN, Oct Still headed to $1B business? – Gates pre-placed (poly, diffusion) Only get to define metal connections –Cheap – only have to pay for metal mask(s) [Wu&Tsai/ISPD2004p103]

Penn ESE Spring DeHon 10 MPGA/SA vs. Custom? AMI CICC’83 –MPGA 1.0 –Std-Cell 0.7 –Custom 0.5 AMI CICC’04 –Custom 0.6 (DSP) –Custom 0.8 (DPath) Toshiba DSP –Custom 0.3 Mosaid RAM –Custom 0.2 GE CICC’86 –MPGA 1.0 –Std-Cell FF/counter 0.7 FullAdder 0.4 RAM 0.2

Penn ESE Spring DeHon 11 Metal Programmable Gate Arrays

Penn ESE Spring DeHon 12 MPGAs Modern -- “Sea of Gates” yield % maybe 5k  /gate ? –(quite a bit of variance)

Penn ESE Spring DeHon 13 FPGA Table

Penn ESE Spring DeHon 14 (semi) Modern FPGAs APEX 20K1500E  52K LEs  0.18  m  24mm  22mm  1.25M 2 /LE XC2V1000  10.44mm x 9.90mm [source: Chipworks]  0.15  m  11,520 4-LUTs  1. 5M 2 /4-LUT [Both also have RAM in cited area]

Penn ESE Spring DeHon 15 Conventional FPGA Tile K-LUT (typical k=4) w/ optional output Flip-Flop

Penn ESE Spring DeHon 16 Toronto FPGA Model

Penn ESE Spring DeHon 17 How many gates?

Penn ESE Spring DeHon 18 “gates” in 2-LUT

Penn ESE Spring DeHon 19 Now how many?

Penn ESE Spring DeHon 20 Which gives: More usable gates? More gates/unit area?

Penn ESE Spring DeHon 21 Gates Required? Depth=3, Depth=2048?

Penn ESE Spring DeHon 22 Gate metric for FPGAs? Day8: several components for computations –compute element –interconnect: space time –instructions Not all applications need in same balance Assigning a single “capacity” number to device is an oversimplification

Penn ESE Spring DeHon 23 MPGA vs. FPGA MPGA (SOG GA) –5K 2 /gate –35-70% usable (50%) –7-17K 2 /gate net Ratio: (5) Xilinx XC4K –1.25M 2 /CLB – gates (26?) –26-73K 2 /gate net Adding ~2x Custom/MPGA, Custom/FPGA ~10x

Penn ESE Spring DeHon 24 90nm FPGA: Stratix II STMicro CMOS090 –Standard Cell Full custom layout …but by tool [Kuon/Rose TRCADv26n2p ]

Penn ESE Spring DeHon 25 MPGA vs. FPGA MPGA (SOG GA)   gd ~1ns Ratio: 1--7 (2.5) –Altera claiming 2× For their SA [2007] –LSI claiming 3× 2005 Xilinx XC4K   1-7 gates in 7ns 2-3 gates typical

Penn ESE Spring DeHon 26 90nm FPGA: Stratix II STMicro CMOS090 [Kuon/Rose TRCADv26n2p ]

Penn ESE Spring DeHon 27 Processors vs. FPGAs

Penn ESE Spring DeHon 28 Processors and FPGAs

Penn ESE Spring DeHon 29 Component Example XC4085XL-09 3,136 CLBs 4.6ns 682 Bit Ops/ns Alpha  64b ALUs 2.3ns 55.7 Bit Ops/ns Single die in 0.35  m [1 “bit op” = 2 gate evaluations]

Penn ESE Spring DeHon 30 Processors and FPGAs

Penn ESE Spring DeHon 31 Raw Density Summary Area –MPGA 2-3x Custom –FPGA 5x MPGA FPGA:std-cell custom ~ 15-30x Area-Time –Gate Array 6-10x Custom –FPGA 15-20x Gate Array FPGA:std-cell custom ~ 100x –Processor 10x FPGA

Penn ESE Spring DeHon 32 Raw Density Caveats Processor/FPGA may solve more specialized problem Problems have different resource balance requirements –…can lead to low yield of raw density

Penn ESE Spring DeHon 33 Task Comparisons

Penn ESE Spring DeHon 34 Broadening Picture Compare larger computations For comparison –throughput density metric: results/area-time normalize out area-time point selection high throughput density  most in fixed area  least area to satisfy fixed throughput target

Penn ESE Spring DeHon 35 Multiply

Penn ESE Spring DeHon 36 Example: FIR Filtering Application metric: TAPs = filter taps multiply accumulate Y i =w 1 x i +w 2 x i

Penn ESE Spring DeHon 37 IIR/Biquad Simplest IIR: Y i =A  X i +B  Y i-1

Penn ESE Spring DeHon 38 DES Keysearch

Penn ESE Spring DeHon 39 DNA Sequence Match Problem: “cost” of transform S 1  S 2 Given: cost of insertion, deletion, substitution Relevance: similarity of DNA sequences –evolutionary similarity –structure predict function Typically: new sequence compared to large databse

Penn ESE Spring DeHon 40 DNA Sequence Match

Penn ESE Spring DeHon 41 Degrade from Peak

Penn ESE Spring DeHon 42 Degrade from Peak: FPGAs Long path length  not run at cycle Limited throughput requirement –bottlenecks elsewhere limit throughput req. Insufficient interconnect Insufficient retiming resources (bandwidth)

Penn ESE Spring DeHon 43 Degrade from Peak: Processors Ops w/ no gate evaluations (interconnect) Ops use limited word width Stalls waiting for retimed data

Penn ESE Spring DeHon 44 Degrade from Peak: Custom/MPGA Solve more general problem than required –(more gates than really need) Long path length Limited throughput requirement Not needed or applicable to a problem

Penn ESE Spring DeHon 45 Degrade Notes We’ll cover these issues in more detail as we get into them later in the course

Penn ESE Spring DeHon 46 Admin No class next Monday (2/19) No office hours Tuesday 2/20

Penn ESE Spring DeHon 47 Big Ideas [MSB Ideas] Raw densities: custom:ga:fpga:processor –1:5:100:1000 –close gap with specialization