Figure 1, MODS exploded Figure 2, Blue Camera Design Figure 3, Blue Camera Structure Figure 4, MODS CCD Dewar Figure 5, MODS I 4k x 4k CCD Figure 6, QE.

Slides:



Advertisements
Similar presentations
Welcome to the University of Michigan – Dearborn Observatory Founded 2007.
Advertisements

HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
LWIR FPA Mirror Image Problem & Recovery April 11, 2011 Roy W. Esplin Dave McLain.
PSI: Polarimetric Spectroscopic Imager - A Simple, High Efficiency, High Resolution Spectro-­Polarimeter Samuel C. Barden Frank Hill.
1 Astronomical Observational Techniques and Instrumentation RIT Course Number Professor Don Figer Telescopes.
Spectral Resolution and Spectrometers
DESpec spectrographs Jennifer Marshall Darren DePoy Texas A&M University.
Optical Astronomy Imaging Chain: Telescopes & CCDs.
Spectral Resolution and Spectrometers A Brief Guide to Understanding and Obtaining the Proper Resolution of the 785 Raman System.
Spectroscopic Reference Design Options D. L. DePoy Texas A&M University.
Keck I Cassegrain ADC: Preliminary Design Overview UCO/Lick Observatory 15 October 2003.
LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control.
1 PHYSICS Progress on characterization of a dualband IR imaging spectrometer Brian Beecken, Cory Lindh, and Randall Johnson Physics Department, Bethel.
Telescopes (Chapter 6). Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on “Our planetary system” and “Jovian planet.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
PLATO kick-off meeting 09-Nov-2010 PLATO Payload overall architecture.
Spectrographs. Spectral Resolution d 1 2 Consider two monochromatic beams They will just be resolved when they have a wavelength separation of d Resolving.
Astronomical Spectroscopy
Integration and Alignment of Optical Subsystem Roy W. Esplin Dave McLain.
CHARA Collaboration Year-Five Science Review News from the CHARA-Array Beam Combination Lab Judit Sturmann.
Astronomical Instrumentation Often, astronomers use additional optics between the telescope optics and their detectors. This is called the instrumentation.
Naoyuki Tamura (University of Durham) Expected Performance of FMOS ~ Estimation with Spectrum Simulator ~ Introduction of simulators  Examples of calculations.
Chapter 6: The Tools of the Astronomer. Telescopes come in two general types Refractors use lenses to bend the light to a focus Reflectors use mirrors.
Visual Angle How large an object appears, and how much detail we can see on it, depends on the size of the image it makes on the retina. This, in turns,
AAO Fibre Instrument Data Simulator 10 October 2011 ROE Workshop 2011 Michael Goodwin Tony Farrell Gayandhi De Silva Scott Smedley Australian Astronomical.
M agellan I namori K yocera E chelle Rebecca BernsteinU. Michigan Steve ShectmanCarnegie Observatories Steve GunnelsParagon Engineering Stefan MochnackiU.
Engineering: NAHUAL Ireland Acquisition Camera, Focal Plane Mechanisms and Layout Tully Peacocke, National University of Ireland Maynooth Carlos del Burgo,
2009 Aug 20 — SAC update WFOS/MOBIE1 WFOS/Multi-Object Broadband Imaging Echellette MOBIE Team, to date: PI / optical designer: Rebecca Bernstein Project.
The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer for JWST Martyn Wells MIRI EC & UKATC.
Telescope Technologies
The Observations of LAMOST Jianrong Shi NAOC 1/
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
15 October Observational Astronomy Direct imaging Photometry Kitchin pp ,
Astronomical Spectroscopy Notes from Richard Gray, Appalachian State, and D. J. Schroeder 1974 in “Methods of Experimental Physics, Vol. 12-Part A Optical.
An IFU for IFOSC on IUCAA 2m Telescope
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
Optical Subsystem Roy Esplin Dave McLain. Internal Optics Bench Subassembly 2 Gut Ray Dichroic Beamsplitter (MWIR reflected, LWIR transmitted) LWIR Lens.
ZTF Optics Design P. Jelinsky ZTF Technical Meeting 1.
ASTR 3010 Lecture 18 Textbook N/A
The Prime Focus Imaging Spectrograph Design and Capabilities
The Active Optics System S. Thomas and the AO team.
Observational Astrophysics I
HBD Gas and QE Monitoring Craig Woody BNL HBD Working Group Meeting October 19, 2005.
Oct 17, 2001SALT PFIS Preliminary Design Review1 Southern African Large Telescope Prime Focus Imaging Spectrograph Mechanical Mechanism Design Michael.
Binospec - Next Generation Optical Spectrograph for the MMT
DBSP-R Upgrade Progress Review The DBSP-R Team DBSP-R Progress Review.
ZTF Optics Design ZTF Technical Meeting 1.
Astronomical Observational Techniques and Instrumentation
Visible Spectro-polarimeter (ViSP) Conceptual Design David Elmore HAO/NCAR
RAW DATA BIAS & DARK SUBTRACTION PIXEL-TO-PIXEL DQE CORR. LOCATE EXTR. WINDOW THROUGHPUT CORRECTION (incl. L-flat, blaze function, transmission of optics,
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n s t r u m e n t S y n t h e s i s a n d A n a l y s i s L a b o r a t o r y APS Formation Sensor.
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
Performance and sensitivity of Low Resolution Spectrographs for LAMOST Zhu Yongtian, Hou Yonghui, Hu Zhongwen Wang Lei, Wang Jianing.
X-ray Interferometer Mirror Module ISAL Study Pre-work Overview.
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
Astronomical Spectroscopic Techniques. Contents 1.Optics (1): Stops, Pupils, Field Optics and Cameras 2.Basic Electromagnetics –Math –Maxwell's equations.
Big Bear Solar Observatory Some ground-based technology developments that will propel solar physics Phil Goode for Jeff Kuhn Big Bear Solar Observatory.
CASE spectrograph Spectrograph Optical Specifications
Astronomical Spectroscopic Techniques
Relative Spectral Response and Flat Fields with Internal Calibration Lamps Luisa M. Lara IAA-CSIC Granada (SPAIN)
NIRSpec pipeline concept Guido De Marchi, Tracy Beck, Torsten Böker
Intra-pixel Sensitivity Testing Preliminary Design Review
Introduction to Spectroscopy
Detective Quantum Efficiency Preliminary Design Review
FourStar 4K x 4K JHK imager
Astronomical Observational Techniques and Instrumentation
How we do Spectroscopy An Overview
Observational Astronomy
Presentation transcript:

Figure 1, MODS exploded Figure 2, Blue Camera Design Figure 3, Blue Camera Structure Figure 4, MODS CCD Dewar Figure 5, MODS I 4k x 4k CCD Figure 6, QE of MODS 1 CCDs Figure 7, 32 output, 8192 x 2880 MODS CCD Detector Systems for the MODS Spectrographs Bruce Atwood, Daniel Pappalardo, Mark A. Derwent, Thomas P. O’Brien The Ohio State University Abstract:The detector plan for the four cameras on the work-horse spectrograph of the worlds largest optical telescope, the Large Binocular Telescope, is presented. The two cameras of MODS 1 will be outfitted for initial deployment in November, 2006 with 4K x 4K detectors processed by the University of Arizona Imaging Technology Laboratory. A custom run of 8192 x 2880 detectors is in the planning stages. These larger detectors will be used for MODS 2 and retrofits to MODS 1. The Dewar and electronics design are outlined. Projections of the limiting magnitude for the completed spectrograph at S/N=5 and 10 are given. MODS will be the work-horse optical spectrograph on the LBT over the wavelength range of 300 to 1000 nm with resolutions, as we purchase a full compliment of gratings, of 2,000 to 16,000. The 11.8 m equivalent diameter LBT, and MODS, are fully described in Osmer, P.S. et. al., 2000, Proc. SPIE 4008, 40-49, and Byard, Paul L., O’Brien, Thomas P., 2000, Proc. SPIE 4008, A clever man once said that in optical design anyone can add surfaces, the trick is to take them out while still getting the job done. Minimizing the number of surfaces reduces cost and increases throughput. We have adopted a very simple traditional design for astronomical grating spectrographs: a decentered paraboloid collimator and a Schmidt camera. A removable dichroic beam splitter located just behind the slit directs the incoming light to separate red (L>5000 Angstroms) and a blue (L<5000 Angstroms) channels. The red and blue optimized collimators produce a 230 mm diameter beams for the red and blue four-position grating turrets. Dispersed light goes from the gratings to red and blue cameras that, while similar in design, use different materials, coatings and prescriptions. MODS includes full multi-slit capability with a 25 position mask interchange mechanism, a flat field and wavelength calibration system and a guide and wavefront-sensing camera which provides the signal to the LBT active optics system. The opto-mechanical modules are supported on a welded steel space frame. While the frame is designed to have low hysteresis, displacement of the spectra on the detectors due to the variable gravity vector and thermal gradients would be unacceptable. To compensate for flexure an IR reference beam is launched from the telescope focal plane and passes through all the optics of the spectrograph with the exception that is strikes a small “by-pass” grating mounted in a hole in the main gratings. A Ge quad cell in the detector plane generates an error signal which steers the collimators to maintain the spectra in a fixed location on the detectors. A total of 30 stepper motors are used to position the optics. All motors are controlled with Micro-Lynx controllers. Mechanism positions are sensed with proximity switches. Linear motions are accomplished with ball screw slides which include spring-applied/electrically- released breaks. A computer model of the structure and the 10 sub-assemblies is shown in Figure 1. All mechanisms are fabricated and in test. The collimator and camera mirrors and small optics are complete. The camera correctors are in fabrication. On site commissioning will begin in the 3rd Q Historically astronomical spectrograph cameras have needed faster f-ratios as telescope size has increased. This simply reflects the fact that the desired slit width in arc-sec and physical pixel size was remaining relatively constant. LBT and MODS represent a significant departure from this trend in two ways. LBT (and many of the current generation of telescopes) will produce seeing limited images that are significantly smaller that has previously been the case. The basic seeing limited slit width for MODS is 0.6 arc-sec. The MODS cameras have a large focal plane, 120 x 40 mm and will be outfitted with detectors with high pixel count, 4096 x 4096 initially and 8192 x 2880 when our custom detectors are ready. This allows us to bin pixels for low resolution work in average conditions and still operate at higher resolution and correctly match to smaller images when available due to unusually good seeing or when adaptive optics is available. The combination allows us to use a relatively slow f/3 camera. The decentered Schmidt design has the advantages of no vignetting and that ghosts from the detector are not returned to the grating The computer model of one of the MODS blue cameras is shown in Figure 2. Figure 3 is a picture of the one of the Cameras on its handling cart. The support structure of four spectrograph cameras, two red and two blue, is described in Atwood, B., O’Brien, Thomas P, 2003, Proc. SPIE 4841, The Dewar for the MODS camera, now out for bid, is shown in Figure 4. An 8 liter capacity LN2 tank will give a hold time > 30 hours. A cold link connects the LN2 reservoir to the detector box which will house either the 4k x 4k or 8k x 3k CCD. Vacuum is maintained by cold charcoal, to pump N2 and O2, and warm zeolite to keep the interior of the Dewar dry even when warm. The camera field flattener lens is the vacuum window. MODS will be commissioned initially with 4k x 4k STA0500A CCDs thinned, coated and packaged by the University of Arizona’s Imaging Technology Laboratory. The red detector and the QE of both the red and blue detectors are shown in Figures 5 and 6. A schematic of the 8k x 3k detector, now under development with the Imaging Technology Laboratory and Scientific Detector Associates, is shown in Figure 7. The control electronics is based on the Ohio State ICIMACS. The 32 channel clock bias board, shown in Figure 8 with 8 channels installed, will be essentially unchanged while the post-amplifier daughter boards will now include on board ADCs. The Sequencer is being ported from the ISA bus to PCI. The expected limiting magnitude for S/N=5 and 10 from a 1 hour exposures as a function of read noise in a single pixel is presented in Figure 9. Included are the effects of sky noise, readout noise, combining the signal from the two MODS, the size of a resolution element, and system throughput. Figure 9, MODS limiting magnitudes Figure 8, 32 Channel Clock Bias Board