Lempel-Ziv Compression Techniques

Slides:



Advertisements
Similar presentations
Source Coding Data Compression A.J. Han Vinck. DATA COMPRESSION NO LOSS of information and exact reproduction (low compression ratio 1:4) general problem.
Advertisements

CSCI 3280 Tutorial 6. Outline  Theory part of LZW  Tree representation of LZW  Table representation of LZW.
Huffman Encoding Dr. Bernard Chen Ph.D. University of Central Arkansas.
Lempel-Ziv-Welch (LZW) Compression Algorithm
Algorithms for Data Compression
Lecture 6 Source Coding and Compression Dr.-Ing. Khaled Shawky Hassan
Trie and Search Trees Dr. Andrew Wallace PhD BEng(hons) EurIng
Lossless Compression - II Hao Jiang Computer Science Department Sept. 18, 2007.
Algorithm Programming Some Topics in Compression Bar-Ilan University תשס"ח by Moshe Fresko.
Introduction to Data Compression
Lempel-Ziv Compression Techniques Classification of Lossless Compression techniques Introduction to Lempel-Ziv Encoding: LZ77 & LZ78 LZ78 Encoding Algorithm.
Lempel-Ziv Compression Techniques
1 Lempel-Ziv algorithms Burrows-Wheeler Data Compression.
Algorithm Programming Some Topics in Compression
Lempel-Ziv-Welch (LZW) Compression Algorithm
Lecture 4 Source Coding and Compression Dr.-Ing. Khaled Shawky Hassan
Data Compression Basics & Huffman Coding
1 Lossless Compression Multimedia Systems (Module 2) r Lesson 1: m Minimum Redundancy Coding based on Information Theory: Shannon-Fano Coding Huffman Coding.
Lossless Compression Multimedia Systems (Module 2 Lesson 3)
Data Compression Algorithms for Energy-Constrained Devices in Delay Tolerant Networks Christopher M. Sadler and Margaret Martonosi In: Proc. of the 4th.
Chapter 2 Source Coding (part 2)
Noiseless Coding. Introduction Noiseless Coding Compression without distortion Basic Concept Symbols with lower probabilities are represented by the binary.
Text Compression Spring 2007 CSE, POSTECH. 2 2 Data Compression Deals with reducing the size of data – Reduce storage space and hence storage cost Compression.
15-853Page :Algorithms in the Real World Data Compression II Arithmetic Coding – Integer implementation Applications of Probability Coding – Run.
Source Coding-Compression
296.3Page 1 CPS 296.3:Algorithms in the Real World Data Compression: Lecture 2.5.
Information and Coding Theory Heuristic data compression codes. Lempel- Ziv encoding. Burrows-Wheeler transform. Juris Viksna, 2015.
Page 110/6/2015 CSE 40373/60373: Multimedia Systems So far  Audio (scalar values with time), image (2-D data) and video (2-D with time)  Higher fidelity.
Fundamental Structures of Computer Science Feb. 24, 2005 Ananda Guna Lempel-Ziv Compression.
Lecture 29. Data Compression Algorithms 1. Commonly, algorithms are analyzed on the base probability factor such as average case in linear search. Amortized.
Fundamental Structures of Computer Science March 23, 2006 Ananda Guna Lempel-Ziv Compression.
Fundamental Data Structures and Algorithms Aleks Nanevski February 10, 2004 based on a lecture by Peter Lee LZW Compression.
1 Strings CopyWrite D.Bockus. 2 Strings Def: A string is a sequence (possibly empty) of symbols from some alphabet. What do we use strings for? 1) Text.
Multimedia Data Introduction to Lossless Data Compression Dr Sandra I. Woolley Electronic, Electrical.
1 Source Coding and Compression Dr.-Ing. Khaled Shawky Hassan Room: C3-222, ext: 1204, Lecture 5.
The LZ family LZ77 LZ78 LZR LZSS LZB LZH – used by zip and unzip
Lossless Compression CIS 465 Multimedia. Compression Compression: the process of coding that will effectively reduce the total number of bits needed to.
Fundamental Data Structures and Algorithms Margaret Reid-Miller 24 February 2005 LZW Compression.
Data Compression Reduce the size of data.  Reduces storage space and hence storage cost. Compression ratio = original data size/compressed data size.
1 Chapter 7 Skip Lists and Hashing Part 2: Hashing.
Lecture 7 Source Coding and Compression Dr.-Ing. Khaled Shawky Hassan
Lempel-Ziv methods.
CS 1501: Algorithm Implementation LZW Data Compression.
Lempel-Ziv-Welch Compression
Page 1KUT Graduate Course Data Compression Jun-Ki Min.
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Basics
Lampel ZIV (LZ) code The Lempel-Ziv algorithm is a variable-to-fixed length code Basically, there are two versions of the algorithm LZ77 and LZ78 are the.
Lecture 12 Huffman Coding King Fahd University of Petroleum & Minerals College of Computer Science & Engineering Information & Computer Science Department.
LZW (Lempel-Ziv-welch) compression method The LZW method to compress data is an evolution of the method originally created by Abraham Lempel and Jacob.
15-853Page :Algorithms in the Real World Data Compression III Lempel-Ziv algorithms Burrows-Wheeler Introduction to Lossy Compression.
CS 1501: Algorithm Implementation
Unit 13 Data Compression King Fahd University of Petroleum & Minerals College of Computer Science & Engineering Information & Computer Science Department.
CSE 589 Applied Algorithms Spring 1999
Data Coding Run Length Coding
Data Compression.
Information and Coding Theory
Lempel-Ziv-Welch (LZW) Compression Algorithm
Applied Algorithmics - week7
Lempel-Ziv Compression Techniques
Lempel-Ziv-Welch (LZW) Compression Algorithm
Lempel-Ziv-Welch (LZW) Compression Algorithm
Why Compress? To reduce the volume of data to be transmitted (text, fax, images) To reduce the bandwidth required for transmission and to reduce storage.
Data Compression Reduce the size of data.
Lempel-Ziv Compression Techniques
فشرده سازي داده ها Reduce the size of data.
Huffman Coding Greedy Algorithm
Image Compression M.Sc. Nov.2015.
CPS 296.3:Algorithms in the Real World
High-capacity Reversible Data-hiding for LZW Codes
Lempel-Ziv-Welch (LZW) Compression Algorithm
Presentation transcript:

Lempel-Ziv Compression Techniques Classification of Lossless Compression techniques Introduction to Lempel-Ziv Encoding: LZ77 & LZ78 LZ78 Encoding Algorithm Decoding Algorithm LZW

Classification of Lossless Compression Techniques Recall what we studied before: Lossless Compression techniques are classified into static, adaptive (or dynamic), and hybrid. Static coding requires two passes: one pass to compute probabilities (or frequencies) and determine the mapping, and a second pass to encode. Examples of Static techniques: Static Huffman Coding All of the adaptive methods are one-pass methods; only one scan of the message is required. Examples of adaptive techniques: LZ77, LZ78, LZW, and Adaptive Huffman Coding

Introduction to Lempel-Ziv Encoding Data compression up until the late 1970's mainly directed towards creating better methodologies for Huffman coding. An innovative, radically different method was introduced in1977 by Abraham Lempel and Jacob Ziv. This technique (called Lempel-Ziv) actually consists of two considerably different algorithms, LZ77 and LZ78. Due to patents, LZ77 and LZ78 led to many variants: The zip and unzip use the LZH technique while UNIX's compress methods belong to the LZW and LZC classes. LZH LZB LZSS LZR LZ77 Variants LZFG LZJ LZMW LZT LZC LZW LZ78 Variants

LZ78 Encoding Algorithm LZ78 inserts one- or multi-character, non-overlapping, distinct patterns of the message to be encoded in a Dictionary. The multi-character patterns are of the form: C0C1 . . . Cn-1Cn. The prefix of a pattern consists of all the pattern characters except the last: C0C1 . . . Cn-1 LZ78 Output: Note: The dictionary is usually implemented as a hash table.

LZ78 Encoding Algorithm (cont’d) Dictionary  empty ; Prefix  empty ; DictionaryIndex  1; while(characterStream is not empty) { Char  next character in characterStream; if(Prefix + Char exists in the Dictionary) Prefix  Prefix + Char ; else if(Prefix is empty) CodeWordForPrefix  0 ; CodeWordForPrefix  DictionaryIndex for Prefix ; Output: (CodeWordForPrefix, Char) ; insertInDictionary( ( DictionaryIndex , Prefix + Char) ); DictionaryIndex++ ; Prefix  empty ; } if(Prefix is not empty) CodeWordForPrefix  DictionaryIndex for Prefix; Output: (CodeWordForPrefix , ) ;

Example 1: LZ78 Encoding Encode (i.e., compress) the string ABBCBCABABCAABCAAB using the LZ78 algorithm. The compressed message is: (0,A)(0,B)(2,C)(3,A)(2,A)(4,A)(6,B) Note: The above is just a representation, the commas and parentheses are not transmitted; we will discuss the actual form of the compressed message later on in slide 12.

Example 1: LZ78 Encoding (cont’d) 1. A is not in the Dictionary; insert it 2. B is not in the Dictionary; insert it 3. B is in the Dictionary. BC is not in the Dictionary; insert it. 4. B is in the Dictionary. BC is in the Dictionary. BCA is not in the Dictionary; insert it. 5. B is in the Dictionary. BA is not in the Dictionary; insert it. 6. B is in the Dictionary. BCA is in the Dictionary. BCAA is not in the Dictionary; insert it. 7. B is in the Dictionary. BCAA is in the Dictionary. BCAAB is not in the Dictionary; insert it.

Example 2: LZ78 Encoding Encode (i.e., compress) the string BABAABRRRA using the LZ78 algorithm. The compressed message is: (0,B)(0,A)(1,A)(2,B)(0,R)(5,R)(2, )

Example 2: LZ78 Encoding (cont’d) 1. B is not in the Dictionary; insert it 2. A is not in the Dictionary; insert it 3. B is in the Dictionary. BA is not in the Dictionary; insert it. 4. A is in the Dictionary. AB is not in the Dictionary; insert it. 5. R is not in the Dictionary; insert it. 6. R is in the Dictionary. RR is not in the Dictionary; insert it. 7. A is in the Dictionary and it is the last input character; output a pair containing its index: (2, )

Example 3: LZ78 Encoding 1. A is not in the Dictionary; insert it Encode (i.e., compress) the string AAAAAAAAA using the LZ78 algorithm. 1. A is not in the Dictionary; insert it 2. A is in the Dictionary AA is not in the Dictionary; insert it 3. A is in the Dictionary. AA is in the Dictionary. AAA is not in the Dictionary; insert it. 4. A is in the Dictionary. AAA is in the Dictionary and it is the last pattern; output a pair containing its index: (3, )

LZ78 Encoding: Number of bits transmitted Example: Uncompressed String: ABBCBCABABCAABCAAB Number of bits = Total number of characters * 8 = 18 * 8 = 144 bits Suppose the codewords are indexed starting from 1: Compressed string( codewords): (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B) Codeword index 1 2 3 4 5 6 7 Each code word consists of an integer and a character: The character is represented by 8 bits. The number of bits n required to represent the integer part of the codeword with index i is given by: Alternatively number of bits required to represent the integer part of the codeword with index i is the number of significant bits required to represent the integer i – 1

LZ78 Encoding: Number of bits transmitted (cont’d) Codeword (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B) index 1 2 3 4 5 6 7 Bits: (1 + 8) + (1 + 8) + (2 + 8) + (2 + 8) + (3 + 8) + (3 + 8) + (3 + 8) = 71 bits The actual compressed message is: 0A0B10C11A010A100A110B where each character is replaced by its binary 8-bit ASCII code.

LZ78 Decoding Algorithm Summary: input: (CW, character) pairs Dictionary  empty ; DictionaryIndex  1 ; while(there are more (CodeWord, Char) pairs in codestream){ CodeWord  next CodeWord in codestream ; Char  character corresponding to CodeWord ; if(CodeWord = = 0) String  empty ; else String  string at index CodeWord in Dictionary ; Output: String + Char ; insertInDictionary( (DictionaryIndex , String + Char) ) ; DictionaryIndex++; } Summary: input: (CW, character) pairs output: if(CW == 0) output: currentCharacter output: stringAtIndex CW + currentCharacter Insert: current output in dictionary

Example 1: LZ78 Decoding Decode (i.e., decompress) the sequence (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B) The decompressed message is: ABBCBCABABCAABCAAB

Example 2: LZ78 Decoding Decode (i.e., decompress) the sequence (0, B) (0, A) (1, A) (2, B) (0, R) (5, R) (2, ) The decompressed message is: BABAABRRRA

Example 3: LZ78 Decoding Decode (i.e., decompress) the sequence (0, A) (1, A) (2, A) (3, ) The decompressed message is: AAAAAAAAA

LZW Encoding Algorithm If the message to be encoded consists of only one character, LZW outputs the code for this character; otherwise it inserts two- or multi-character, overlapping*, distinct patterns of the message to be encoded in a Dictionary. *The last character of a pattern is the first character of the next pattern. The patterns are of the form: C0C1 . . . Cn-1Cn. The prefix of a pattern consists of all the pattern characters except the last: C0C1 . . . Cn-1 LZW output if the message consists of more than one character: If the pattern is not the last one; output: The code for its prefix. If the pattern is the last one: if the last pattern exists in the Dictionary; output: The code for the pattern. If the last pattern does not exist in the Dictionary; output: code(lastPrefix) then output: code(lastCharacter) Note: LZW outputs codewords that are 12-bits each. Since there are 212 = 4096 codeword possibilities, the minimum size of the Dictionary is 4096; however since the Dictionary is usually implemented as a hash table its size is larger than 4096.

LZW Encoding Algorithm (cont’d) Initialize Dictionary with 256 single character strings and their corresponding ASCII codes; Prefix  first input character; CodeWord  256; while(not end of character stream){ Char  next input character; if(Prefix + Char exists in the Dictionary) Prefix  Prefix + Char; else{ Output: the code for Prefix; insertInDictionary( (CodeWord , Prefix + Char) ) ; CodeWord++; Prefix  Char; }

Example 1: Compression using LZW Encode the string BABAABAAA by the LZW encoding algorithm. 1. BA is not in the Dictionary; insert BA, output the code for its prefix: code(B) 2. AB is not in the Dictionary; insert AB, output the code for its prefix: code(A) 3. BA is in the Dictionary. BAA is not in Dictionary; insert BAA, output the code for its prefix: code(BA) 4. AB is in the Dictionary. ABA is not in the Dictionary; insert ABA, output the code for its prefix: code(AB) 5. AA is not in the Dictionary; insert AA, output the code for its prefix: code(A) 6. AA is in the Dictionary and it is the last pattern; output its code: code(AA) The compressed message is: <66><65><256><257><65><260>

Example 2: Compression using LZW Encode the string BABAABRRRA by the LZW encoding algorithm. 1. BA is not in the Dictionary; insert BA, output the code for its prefix: code(B) 2. AB is not in the Dictionary; insert AB, output the code for its prefix: code(A) 3. BA is in the Dictionary. BAA is not in Dictionary; insert BAA, output the code for its prefix: code(BA) 4. AB is in the Dictionary. ABR is not in the Dictionary; insert ABR, output the code for its prefix: code(AB) 5. RR is not in the Dictionary; insert RR, output the code for its prefix: code(R) 6. RR is in the Dictionary. RRA is not in the Dictionary and it is the last pattern; insert RRA, output code for its prefix: code(RR), then output code for last character: code(A) The compressed message is: <66><65><256><257><82><260> <65>

LZW: Number of bits transmitted Example: Uncompressed String: aaabbbbbbaabaaba Number of bits = Total number of characters * 8 = 16 * 8 = 128 bits Compressed string (codewords): <97><256><98><258><259><257><261> Number of bits = Total Number of codewords * 12 = 7 * 12 = 84 bits Note: Each codeword is 12 bits because the minimum Dictionary size is taken as 4096, and 212 = 4096

LZW Decoding Algorithm The LZW decompressor creates the same string table during decompression. Initialize Dictionary with 256 ASCII codes and corresponding single character strings as their translations; PreviousCodeWord  first input code; Output: string(PreviousCodeWord) ; Char  character(first input code); CodeWord  256; while(not end of code stream){ CurrentCodeWord  next input code ; if(CurrentCodeWord exists in the Dictionary) String  string(CurrentCodeWord) ; else String  string(PreviousCodeWord) + Char ; Output: String; Char  first character of String ; insertInDictionary( (CodeWord , string(PreviousCodeWord) + Char ) ); PreviousCodeWord  CurrentCodeWord ; CodeWord++ ; }

LZW Decoding Algorithm (cont’d) Summary of LZW decoding algorithm: output: string(first CodeWord); while(there are more CodeWords){ if(CurrentCodeWord is in the Dictionary) output: string(CurrentCodeWord); else output: PreviousOutput + PreviousOutput first character; insert in the Dictionary: PreviousOutput + CurrentOutput first character; }

Example 1: LZW Decompression Use LZW to decompress the output sequence <66> <65> <256> <257> <65> <260> 66 is in Dictionary; output string(66) i.e. B 65 is in Dictionary; output string(65) i.e. A, insert BA 256 is in Dictionary; output string(256) i.e. BA, insert AB 257 is in Dictionary; output string(257) i.e. AB, insert BAA 65 is in Dictionary; output string(65) i.e. A, insert ABA 260 is not in Dictionary; output previous output + previous output first character: AA, insert AA

Example 2: LZW Decompression Decode the sequence <67> <70> <256> <258> <259> <257> by LZW decode algorithm. 67 is in Dictionary; output string(67) i.e. C 70 is in Dictionary; output string(70) i.e. F, insert CF 256 is in Dictionary; output string(256) i.e. CF, insert FC 258 is not in Dictionary; output previous output + C i.e. CFC, insert CFC 259 is not in Dictionary; output previous output + C i.e. CFCC, insert CFCC 257 is in Dictionary; output string(257) i.e. FC, insert CFCCF

LZW: Limitations What happens when the dictionary gets too large? One approach is to clear entries 256-4095 and start building the dictionary again. The same approach must also be used by the decoder.

Exercises Use LZ78 to trace encoding the string SATATASACITASA. Write a Java program that encodes a given string using LZ78. Write a Java program that decodes a given set of encoded codewords using LZ78. Use LZW to trace encoding the string ABRACADABRA. Write a Java program that encodes a given string using LZW. Write a Java program that decodes a given set of encoded codewords using LZW.