These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.

Slides:



Advertisements
Similar presentations
Design Phase What’s design?
Advertisements

1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter 14: Design Method --- data and architectural design Design -- A multistep process in which representations of data structure, program structure,
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Design Concepts and Principles
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter 10: Architectural Design
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Architectural Design.
What is Software Architecture?
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Software Engineering Fall 2005
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Chapter 10 Architectural Design
1 Chapter 14 Architectural Design. 2 Why Architecture? The architecture is not the operational software. Rather, it is a representation that enables a.
Chapter 6 System Engineering - Computer-based system - System engineering process - “Business process” engineering - Product engineering (Source: Pressman,
These slides are designed to accompany Web Engineering: A Practitioner’s Approach (The McGraw-Hill Companies, Inc.) by Roger Pressman and David Lowe, copyright.
1 COSC 4406 Software Engineering COSC 4406 Software Engineering Haibin Zhu, Ph.D. Dept. of Computer Science and mathematics, Nipissing University, 100.
Programming Or Software Engineering?
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.1.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 Chapter 14 Architectural Design 2 Why Architecture? The architecture is not the operational software. Rather, it is a representation that enables a.
Why Architecture? The architecture is not the operational software. Rather, it is a representation that enables a software engineer to: (1) analyze the.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Lecture 9: Chapter 9 Architectural Design
SOFTWARE DESIGN.
Chapter 13 Architectural Design
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
TCS2411 Software Engineering1 Data-Flow Oriented Design “From DFD to Structure Chart”
Developing Component- Based Systems X LIU, School of Computing, Napier University TIP This chapter discusses the techniques to develop component-based.
ARCHITECTURAL DESIGN. Why is Architecture Important? Representations of software architecture are an enabler for communication between all parties (stakeholders)
Structured Design (Yourdon) ( based on Pressman’s Chapter 14 – 5th edition or Chapter th edition) copyright © 1996, 2001, 2005 R.S. Pressman &
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 10a: Architectural Design Software Engineering: A Practitioner’s Approach, 6/e Chapter 10a:
1 Supplementary Slides for Software Engineering: A Practitioner's Approach, 5/e Supplementary Slides for Software Engineering: A Practitioner's Approach,
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Design Methods Instructor: Dr. Jerry Gao. Software Design Methods Design --> as a multistep process in which we design: a) data structureb) program structure.
Architectural Design Introduction Design has been described as a multistep process in which representations of data and program structure,
Software Engineering B.Tech IT/II Sem-II Term: Unit-4 PPT SLIDES Text Books:1.Software Engineering, A practitioner’s approach Roger s. Pressman.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 9: Design Engineering Software Engineering: A Practitioner’s Approach, 6/e Chapter.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter : 9 Architectural Design
Chapter 13 설계 개념 Architectural Design 임현승 강원대학교 Revised from the slides by Roger S. Pressman and Bruce R. Maxim for the book “Software Engineering: A Practitioner’s.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 10b: Architectural Design Software Engineering: A Practitioner’s Approach, 6/e Chapter 10b:
Chapter : 9 Architectural Design. Software Architecture What Is Architecture? The software architecture of a program or computing system is the structure.
1 Chapter : Architecture & User Interface Design.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter 9 Architectural Design. Why Architecture? The architecture is not the operational software. Rather, it is a representation that enables a software.
1 Chapter 2: Architectural Design. 2 Introduction Structure or structures of the system, which comprise software components, the externally visible properties.
Software Engineering: A Practitioner’s Approach, 6/e Chapter 18 Analysis Modeling for WebApps copyright © 1996, 2001, 2005 R.S. Pressman & Associates,
Chapter 13 Architectural Design
Architectural Design.
Lecture 9- Design Concepts and Principles
Software Engineering: A Practitioner’s Approach, 6/e Chapter 18 Analysis Modeling for WebApps copyright © 1996, 2001, 2005 R.S. Pressman & Associates,
Chapter 13 Architectural Design
Software Engineering: A Practitioner’s Approach, 6/e Chapter 11 Component-Level Design copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc.
CSSSPEC6 SOFTWARE DEVELOPMENT WITH QUALITY ASSURANCE
CHAPTER 2 CREATING AN ARCHITECTURAL DESIGN.
Lecture 6: Design Concepts and Architecture
CS 8532: Advanced Software Engineering
Highlights of data design and
Chapter 9 Architectural Design
Design Model Like a Pyramid Component Level Design i n t e r f a c d s
Lecture 9- Design Concepts and Principles
Chapter 13 Architectural Design
Chapter 9 Architectural Design.
Software Engineering: A Practitioner’s Approach, 6/e Chapter 10 Architectural Design copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For.
Presentation transcript:

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Software Engineering: A Practitioner’s Approach, 6/e Chapter 10 Architectural Design Software Engineering: A Practitioner’s Approach, 6/e Chapter 10 Architectural Design copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Why Architecture? The architecture is not the operational software. Rather, it is a representation that enables a software engineer to: (1) analyze the effectiveness of the design in meeting its stated requirements, (2) consider architectural alternatives at a stage when making design changes is still relatively easy, and (3) reduce the risks associated with the construction of the software.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Why is Architecture Important? Representations of software architecture are an enabler for communication between all parties (stakeholders) interested in the development of a computer-based system. Representations of software architecture are an enabler for communication between all parties (stakeholders) interested in the development of a computer-based system. The architecture highlights early design decisions that will have a profound impact on all software engineering work that follows and, as important, on the ultimate success of the system as an operational entity. The architecture highlights early design decisions that will have a profound impact on all software engineering work that follows and, as important, on the ultimate success of the system as an operational entity. Architecture “constitutes a relatively small, intellectually graspable model of how the system is structured and how its components work together” [BAS03]. Architecture “constitutes a relatively small, intellectually graspable model of how the system is structured and how its components work together” [BAS03].

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Data Design At the architectural level … At the architectural level … Design of one or more databases to support the application architecture Design of one or more databases to support the application architecture Design of methods for ‘mining’ the content of multiple databases Design of methods for ‘mining’ the content of multiple databases navigate through existing databases in an attempt to extract appropriate business-level information navigate through existing databases in an attempt to extract appropriate business-level information Design of a data warehouse—a large, independent database that has access to the data that are stored in databases that serve the set of applications required by a business Design of a data warehouse—a large, independent database that has access to the data that are stored in databases that serve the set of applications required by a business

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Data Design At the component level … At the component level … refine data objects and develop a set of data abstractions refine data objects and develop a set of data abstractions implement data object attributes as one or more data structures implement data object attributes as one or more data structures review data structures to ensure that appropriate relationships have been established review data structures to ensure that appropriate relationships have been established simplify data structures as required simplify data structures as required

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Data Design—Component Level 1. The systematic analysis principles applied to function and behavior should also be applied to data. 2. All data structures and the operations to be performed on each should be identified. 3. A data dictionary should be established and used to define both data and program design. 4. Low level data design decisions should be deferred until late in the design process. 5. The representation of data structure should be known only to those modules that must make direct use of the data contained within the structure. 6. A library of useful data structures and the operations that may be applied to them should be developed. 7. A software design and programming language should support the specification and realization of abstract data types.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Architectural Styles Data-centered architectures Data-centered architectures Data flow architectures Data flow architectures Call and return architectures Call and return architectures Object-oriented architectures Object-oriented architectures Layered architectures Layered architectures Each style describes a system category that encompasses: (1) a set of components (e.g., a database, computational modules) that perform a function required by a system, (2) a set of connectors that enable “communication, coordination and cooperation” among components, (3) constraints that define how components can be integrated to form the system, and (4) semantic models that enable a designer to understand the overall properties of a system by analyzing the known properties of its constituent parts.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Data-Centered Architecture

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Data Flow Architecture

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Call and Return Architecture

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Layered Architecture

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Architectural Patterns Concurrency—applications must handle multiple tasks in a manner that simulates parallelism Concurrency—applications must handle multiple tasks in a manner that simulates parallelism operating system process management pattern operating system process management pattern task scheduler pattern task scheduler pattern Persistence—Data persists if it survives past the execution of the process that created it. Two patterns are common: Persistence—Data persists if it survives past the execution of the process that created it. Two patterns are common: a database management system pattern that applies the storage and retrieval capability of a DBMS to the application architecture a database management system pattern that applies the storage and retrieval capability of a DBMS to the application architecture an application level persistence pattern that builds persistence features into the application architecture an application level persistence pattern that builds persistence features into the application architecture Distribution— the manner in which systems or components within systems communicate with one another in a distributed environment Distribution— the manner in which systems or components within systems communicate with one another in a distributed environment A broker acts as a ‘middle-man’ between the client component and a server component. A broker acts as a ‘middle-man’ between the client component and a server component.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Architectural Design The software must be placed into context The software must be placed into context the design should define the external entities (other systems, devices, people) that the software interacts with and the nature of the interaction the design should define the external entities (other systems, devices, people) that the software interacts with and the nature of the interaction A set of architectural archetypes should be identified A set of architectural archetypes should be identified An archetype is an abstraction (similar to a class) that represents one element of system behavior An archetype is an abstraction (similar to a class) that represents one element of system behavior The designer specifies the structure of the system by defining and refining software components that implement each archetype The designer specifies the structure of the system by defining and refining software components that implement each archetype

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Architectural Context

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Archetypes

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Component Structure

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Refined Component Structure

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Analyzing Architectural Design 1. Collect scenarios. 2. Elicit requirements, constraints, and environment description. 3. Describe the architectural styles/patterns that have been chosen to address the scenarios and requirements: module view module view process view process view data flow view data flow view 4. Evaluate quality attributes by considered each attribute in isolation. 5. Identify the sensitivity of quality attributes to various architectural attributes for a specific architectural style. 6. Critique candidate architectures (developed in step 3) using the sensitivity analysis conducted in step 5.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, An Architectural Design Method "four bedrooms, three baths, lots of glass..." customer requirements architectural design

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Deriving Program Architecture ProgramArchitecture

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Partitioning the Architecture “horizontal” and “vertical” partitioning are required “horizontal” and “vertical” partitioning are required

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Horizontal Partitioning define separate branches of the module hierarchy for each major function define separate branches of the module hierarchy for each major function use control modules to coordinate communication between functions use control modules to coordinate communication between functions function 1 function 3 function 2

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Vertical Partitioning: Factoring design so that decision making and work are stratified design so that decision making and work are stratified decision making modules should reside at the top of the architecture decision making modules should reside at the top of the architecture workers decision-makers

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Why Partitioned Architecture? results in software that is easier to test results in software that is easier to test leads to software that is easier to maintain leads to software that is easier to maintain results in propagation of fewer side effects results in propagation of fewer side effects results in software that is easier to extend results in software that is easier to extend

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Structured Design objective: to derive a program architecture that is partitioned objective: to derive a program architecture that is partitioned approach: approach: the DFD is mapped into a program architecture the DFD is mapped into a program architecture the PSPEC and STD are used to indicate the content of each module the PSPEC and STD are used to indicate the content of each module notation: structure chart notation: structure chart

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Flow Characteristics Transform flow Transaction flow

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, General Mapping Approach isolate incoming and outgoing flow boundaries; for transaction flows, isolate the transaction center working from the boundary outward, map DFD transforms into corresponding modules add control modules as required refine the resultant program structure using effective modularity concepts

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Transform Mapping

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Factoring

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, First Level Factoring main program controller input controller processing controller output controller

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Second Level Mapping

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Transaction Flow T incoming flow action path

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Transaction Example operator commands process operator commands fixture setting report robot control fixture servos display screen robot control software in reality, other commands would also be shown assembly record

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Refining the Analysis Model write an English language processing narrative for the level 01 flow model apply noun/verb parse to isolate processes, data items, store and entities develop level 02 and 03 flow models create corresponding data dictionary entries refine flow models as appropriate... now, we're ready to begin design!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Deriving Level 1 Processing narrative for " process operator commands" Process operator command software reads operator commands from the cell operator. An error message is displayed for invalid commands. The command type is determined for valid commands and appropriate action is taken. When fixture commands are encountered, fixture status is analyzed and a fixture setting is output to the fixture servos. When a report is selected, the assembly record file is read and a report is generated and displayed on the operator display screen. When robot control switches are selected, control values are sent to the robot control system. Processing narrative for " process operator commands" Process operator command software reads operator operatorcommands from from the cell operator. An error message is isdisplayed for for invalid commands. The command type is isdetermined for for valid commands and appropriate and appropriate action is taken. When fixture commands are areencountered,fixture status is isanalyzed and a and a fixture setting is isoutput to the to the fixture servos. When a report is is selected, the the assembly record file is isread and a and a report is generated and anddisplayed on the operator on the operator display screen. When robot control switches are areselected, control value s are sent to to the robot control system. noun-verb parse

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Level 1 Data Flow Diagram operator fixture servos display screen generate analyze fixture status send control value determine command type read operator commands Fixture setting assembly record status Error msg commands Valid command fixture select report control robot report robot control

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Level 2 Data Flow Diagram read command validate command determine type read record calculate output values format report produce error msg read fixture status determine setting format setting send control value command invalid command error msg status combined status raw setting fixture setting robot control start/stop assembly record values report valid command

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Transaction Mapping Principles isolate the incoming flow path define each of the action paths by looking for the "spokes of the wheel" assess the flow on each action path define the dispatch and control structure map each action path flow individually

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Transaction Mapping a b t g h d e f i k j l m n Data flow model x1 b a t x2 x3 x4 d e f g h x3.1 l m n i j k mapping program structure

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Isolate Flow Paths read command validate command determine type read record calculate output values format report produce error msg read fixture status determine setting format setting send control value command invalid command error msg status combined status raw setting fixture setting robot control start/stop assembly record values report valid command

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Map the Flow Model

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, Refining the Structure Chart