Recap: Reaching defns algorithm From last time: reaching defns worklist algo We want to avoid using structure of the domain outside of the flow functions.

Slides:



Advertisements
Similar presentations
Partial Orderings Section 8.6.
Advertisements

Continuing Abstract Interpretation We have seen: 1.How to compile abstract syntax trees into control-flow graphs 2.Lattices, as structures that describe.
CSCI 115 Chapter 6 Order Relations and Structures.
Tutorial on Widening (and Narrowing) Hongseok Yang Seoul National University.
Equivalence, Order, and Inductive Proof
1 CS 201 Compiler Construction Data Flow Framework.
8.6 Partial Orderings. Definition Partial ordering– a relation R on a set S that is Reflexive, Antisymmetric, and Transitive Examples? R={(a,b)| a is.
Foundations of Data-Flow Analysis. Basic Questions Under what circumstances is the iterative algorithm used in the data-flow analysis correct? How precise.
1 Basic abstract interpretation theory. 2 The general idea §a semantics l any definition style, from a denotational definition to a detailed interpreter.
CSE 231 : Advanced Compilers Building Program Analyzers.
CSE 231 : Advanced Compilers Building Program Analyzers.
Worklist algorithm Initialize all d i to the empty set Store all nodes onto a worklist while worklist is not empty: –remove node n from worklist –apply.
Correctness. Until now We’ve seen how to define dataflow analyses How do we know our analyses are correct? We could reason about each individual analysis.
1 Iterative Program Analysis Part I Mooly Sagiv Tel Aviv University Textbook: Principles of Program.
From last time: Lattices A lattice is a tuple (S, v, ?, >, t, u ) such that: –(S, v ) is a poset – 8 a 2 S. ? v a – 8 a 2 S. a v > –Every two elements.
Data Flow Analysis Compiler Design Nov. 3, 2005.
From last time: reaching definitions For each use of a variable, determine what assignments could have set the value being read from the variable Information.
Constraints for reaching definitions Using may-point-to information: out = in [ { x ! s | x 2 may-point-to(p) } Using must-point-to aswell: out = in –
1 Iterative Program Analysis Mooly Sagiv Tel Aviv University Textbook: Principles of Program Analysis.
Data Flow Analysis Compiler Design October 5, 2004 These slides live on the Web. I obtained them from Jeff Foster and he said that he obtained.
Administrative stuff Office hours: After class on Tuesday.
Recap Let’s do a recap of what we’ve seen so far Started with worklist algorithm for reaching definitions.
Constraints for reaching definitions Using may-point-to information: out = in [ { x ! s | x 2 may-point-to(p) } Using must-point-to aswell: out = in –
Data Flow Analysis Compiler Design Nov. 8, 2005.
Course Outline Traditional Static Program Analysis –Theory Compiler Optimizations; Control Flow Graphs, Data-flow Analysis Data-flow Frameworks --- today’s.
San Diego October 4-7, 2006 Over 1,000 women in computing Events for undergraduates considering careers and graduate school Events for graduate students.
1 CS 201 Compiler Construction Lecture 4 Data Flow Framework.
From last time: reaching definitions For each use of a variable, determine what assignments could have set the value being read from the variable Information.
From last lecture We want to find a fixed point of F, that is to say a map m such that m = F(m) Define ?, which is ? lifted to be a map: ? = e. ? Compute.
Programming Language Semantics Denotational Semantics Chapter 5 Part III Based on a lecture by Martin Abadi.
Even more formal To reason more formally about termination and precision, we re-express our worklist algorithm mathematically We will use fixed points.
Claus Brabrand, ITU, Denmark DATA-FLOW ANALYSISMar 25, 2009 Static Analysis: Data-Flow Analysis II Claus Brabrand IT University of Copenhagen (
Termination Still, it’s annoying to have to perform a join in the worklist algorithm It would be nice to get rid of it, if there is a property of the flow.
1 Program Analysis Mooly Sagiv Tel Aviv University Textbook: Principles of Program Analysis.
1 Partial Orderings Based on Slides by Chuck Allison from Rosen, Chapter 8.6 Modified by.
Sets, POSets, and Lattice © Marcelo d’Amorim 2010.
Abstract Interpretation (Cousot, Cousot 1977) also known as Data-Flow Analysis.
MIT Foundations of Dataflow Analysis Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology.
Solving fixpoint equations
Program Analysis and Verification Spring 2015 Program Analysis and Verification Lecture 9: Abstract Interpretation I Roman Manevich Ben-Gurion University.
8.3 Representing Relations Directed Graphs –Vertex –Arc (directed edge) –Initial vertex –Terminal vertex.
CS 614: Theory and Construction of Compilers Lecture 17 Fall 2003 Department of Computer Science University of Alabama Joel Jones.
Formalization of DFA using lattices. Recall worklist algorithm let m: map from edge to computed value at edge let worklist: work list of nodes for each.
Problem Statement How do we represent relationship between two related elements ?
Unit II Discrete Structures Relations and Functions SE (Comp.Engg.)
1 Section 4.3 Order Relations A binary relation is an partial order if it transitive and antisymmetric. If R is a partial order over the set S, we also.
Compiler Principles Fall Compiler Principles Lecture 11: Loop Optimizations Roman Manevich Ben-Gurion University.
1 Partial Orderings Based on Slides by Chuck Allison from Rosen, Chapter 8.6 Modified by.
Data Flow Analysis II AModel Checking and Abstract Interpretation Feb. 2, 2011.
1 Iterative Program Analysis Part II Mathematical Background Mooly Sagiv Tel Aviv University
Chaotic Iterations Mooly Sagiv Tel Aviv University Textbook: Principles of Program Analysis.
Chaotic Iterations Mooly Sagiv Tel Aviv University Textbook: Principles of Program Analysis.
Lub and glb Given a poset (S, · ), and two elements a 2 S and b 2 S, then the: –least upper bound (lub) is an element c such that a · c, b · c, and 8 d.
DFA foundations Simone Campanoni
Chapter 6 Order Relations and Structures
Fixpoints and Reachability
Simone Campanoni DFA foundations Simone Campanoni
Another example: constant prop
Dataflow analysis.
Discrete Math (2) Haiming Chen Associate Professor, PhD
Concurrent Models of Computation
Data Flow Analysis Compiler Design
Lecture 20: Dataflow Analysis Frameworks 11 Mar 02
Background material.
Formalization of DFA using lattices
Background material.
Formalization of DFA using lattices
Formalization of DFA using lattices
Formalization of DFA using lattices
Presentation transcript:

Recap: Reaching defns algorithm From last time: reaching defns worklist algo We want to avoid using structure of the domain outside of the flow functions. Will use lattices! while (worklist.empty.not) do let n := worklist.remove_any; let info_in := m(n.incoming_edges); let info_out := F(n, info_in); for i := 0.. info_out.length-1 do let new_info := m(n.outgoing_edges[i]) [ info_out[i]; if (m(n.outgoing_edges[i])  new_info]) m(n.outgoing_edges[i]) := new_info; worklist.add(n.outgoing_edges[i].dst);

Background material

Relations A relation over a set S is a set R µ S £ S –We write a R b for (a,b) 2 R A relation R is: –reflexive iff 8 a 2 S. a R a –transitive iff 8 a 2 S, b 2 S, c 2 S. a R b Æ b R c ) a R c –symmetric iff 8 a, b 2 S. a R b ) b R a –anti-symmetric iff 8 a, b, 2 S. a R b ) : (b R a)

Relations A relation over a set S is a set R µ S £ S –We write a R b for (a,b) 2 R A relation R is: –reflexive iff 8 a 2 S. a R a –transitive iff 8 a 2 S, b 2 S, c 2 S. a R b Æ b R c ) a R c –symmetric iff 8 a, b 2 S. a R b ) b R a –anti-symmetric iff 8 a, b, 2 S. a R b ) : (b R a) 8 a, b, 2 S. a R b Æ b R a ) a = b

Partial orders An equivalence class is a relation that is: A partial order is a relation that is:

Partial orders An equivalence class is a relation that is: –reflexive, transitive, symmetric A partial order is a relation that is: –reflexive, transitive, anti-symmetric A partially ordered set (a poset) is a pair (S, · ) of a set S and a partial order · over the set Examples of posets: (2 S, µ ), (Z, · ), (Z, divides)

Lub and glb Given a poset (S, · ), and two elements a 2 S and b 2 S, then the: –least upper bound (lub) is an element c such that a · c, b · c, and 8 d 2 S. (a · d Æ b · d) ) c · d –greatest lower bound (glb) is an element c such that c · a, c · b, and 8 d 2 S. (d · a Æ d · b) ) d · c

Lub and glb Given a poset (S, · ), and two elements a 2 S and b 2 S, then the: –least upper bound (lub) is an element c such that a · c, b · c, and 8 d 2 S. (a · d Æ b · d) ) c · d –greatest lower bound (glb) is an element c such that c · a, c · b, and 8 d 2 S. (d · a Æ d · b) ) d · c lub and glb don’t always exists:

Lub and glb Given a poset (S, · ), and two elements a 2 S and b 2 S, then the: –least upper bound (lub) is an element c such that a · c, b · c, and 8 d 2 S. (a · d Æ b · d) ) c · d –greatest lower bound (glb) is an element c such that c · a, c · b, and 8 d 2 S. (d · a Æ d · b) ) d · c lub and glb don’t always exists:

Lattices A lattice is a tuple (S, v, ?, >, t, u ) such that: –(S, v ) is a poset – 8 a 2 S. ? v a – 8 a 2 S. a v > –Every two elements from S have a lub and a glb – t is the least upper bound operator, called a join – u is the greatest lower bound operator, called a meet

Examples of lattices Powerset lattice

Examples of lattices Powerset lattice

Examples of lattices Booleans expressions

Examples of lattices Booleans expressions

Examples of lattices Booleans expressions

Examples of lattices Booleans expressions

End of background material

Back to our example We formalize our domain with a powerset lattice What should be top and what should be bottom? Does it matter?

Back to our example We formalize our domain with a powerset lattice What should be top and what should be bottom? Does it matter? –It matters because, as we’ve seen, there is a notion of approximation, and this notion shows up in the lattice

Direction of lattice Unfortunately: –dataflow analysis community has picked one direction –abstract interpretation community has picked the other We will work with the abstract interpretation direction Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)

Direction of lattice Always safe to go up in the lattice Can always set the result to > Hard to go down in the lattice So... Bottom will be the empty set in reaching defs

Worklist algorithm using lattices let m: map from edge to computed value at edge let worklist: work list of nodes for each edge e in CFG do m(e) := ? for each node n do worklist.add(n) while (worklist.empty.not) do let n := worklist.remove_any; let info_in := m(n.incoming_edges); let info_out := F(n, info_in); for i := 0.. info_out.length do let new_info := m(n.outgoing_edges[i]) t info_out[i]; if (m(n.outgoing_edges[i])  new_info]) m(n.outgoing_edges[i]) := new_info; worklist.add(n.outgoing_edges[i].dst);

Termination of this algorithm? For reaching definitions, it terminates... Why? –lattice is finite Can we loosen this requirement? –Yes, we only require the lattice to have a finite height Height of a lattice: length of the longest ascending or descending chain Height of lattice (2 S, µ ) =

Termination of this algorithm? For reaching definitions, it terminates... Why? –lattice is finite Can we loosen this requirement? –Yes, we only require the lattice to have a finite height Height of a lattice: length of the longest ascending or descending chain Height of lattice (2 S, µ ) = | S |

Termination Still, it’s annoyting to have to perform a join in the worklist algorithm It would be nice to get rid of it, if there is a property of the flow functions that would allow us to do so while (worklist.empty.not) do let n := worklist.remove_any; let info_in := m(n.incoming_edges); let info_out := F(n, info_in); for i := 0.. info_out.length do let new_info := m(n.outgoing_edges[i]) t info_out[i]; if (m(n.outgoing_edges[i])  new_info]) m(n.outgoing_edges[i]) := new_info; worklist.add(n.outgoing_edges[i].dst);

Even more formal To reason more formally about termination and precision, we re-express our worklist algorithm mathematically We will use fixed points to formalize our algorithm

Fixed points Recall, we are computing m, a map from edges to dataflow information Define a global flow function F as follows: F takes a map m as a parameter and returns a new map m’, in which individual local flow functions have been applied

Fixed points We want to find a fixed point of F, that is to say a map m such that m = F(m) Approach to doing this? Define ?, which is ? lifted to be a map: ? = e. ? Compute F( ? ), then F(F( ? )), then F(F(F( ? ))),... until the result doesn’t change anymore

Fixed points Formally: We would like the sequence F i ( ? ) for i = 0, 1, 2... to be increasing, so we can get rid of the outer join Require that F be monotonic: – 8 a, b. a v b ) F(a) v F(b)

Fixed points

Back to termination So if F is monotonic, we have what we want: finite height ) termination, without the outer join Also, if the local flow functions are monotonic, then global flow function F is monotonic

Another benefit of monotonicity Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp. Then:

Another benefit of monotonicity Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp. Then:

Another benefit of monotonicity Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp. Then:

Another benefit of monotonicity We are computing the least fixed point...