Yu. M. Bunkov H. Godfrin E. Collin A.S. Chen D. Cousins R. Harakaly S. Triqueneaux J. Elbs P. Hunger G. E. Volovik J. Sauls J. Parpia W. Halperin Yu. M.

Slides:



Advertisements
Similar presentations
MICROKELVIN: JRA3 Fundamental physics for the study of cosmological analogues in the laboratory.
Advertisements

Dynamics of Spin-1 Bose-Einstein Condensates
Spin superfluidity and magnon Bose – Einstein condensation MicroKelvin, 2013 Yuriy Bunkov Institute Neel, CNRS, Grenoble, France 1. Review of Magnon BEC.
MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
Rotations and quantized vortices in Bose superfluids
1 Eniko Madarassy Reconnections and Turbulence in atomic BEC with C. F. Barenghi Durham University, 2006.
COSLAB-2004 HPD and Superfluid Hydrodynamics Yury Mukharsky.
Yoan Léger Laboratory of Quantum Opto-electronics Ecole Polytechnique Fédérale de Lausanne Switzerland.
Superconducting Quantum Interference Device SQUID C. P. Sun Department of Physics National Sun Yat Sen University.
1 Enikö Madarassy Vortex motion in trapped Bose-Einstein condensate Durham University, March, 2007.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
Conference Summary August 6, Outline The Conference Committee The Conference Organization Topical Summary Looking Forward to QFS2007 in Kazan.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Nuclear Magnetic Resonance Spectrometry Chap 19. Absorption in CW Experiments Energy of precessing particle E = -μ z B o = -μ B o cos θ When an RF photon.
Guillermina Ramirez San Juan
Carrier Wave Rabi Flopping (CWRF) Presentation by Nathan Hart Conditions for CWRF: 1.There must exist a one photon resonance with the ground state 2.The.
A. Sinchenko, National Research Nuclear University MEPhI, Moscow
Qiang Gu (顾 强) Cold atoms in the synthetic magnetic field Department of Physics, University of Science and Technology Beijing (北京科技大学 物理系) KITPC, Beijing,
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Localized Bose-Einstein Condensation in Liquid 4He in Disorder Henry R. Glyde Department of Physics & Astronomy University of Delaware APS March Meeting.
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
Localization of phonons in chains of trapped ions Alejandro Bermúdez, Miguel Ángel Martín-Delgado and Diego Porras Department of Theoretical Physics Universidad.
Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Yu. Bunkov E. Collin J. Elbs H. Godfrin The status of new Dark Matter project ULTIMA Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France Cosmology in.
ABOVE BARRIER TRANSMISSION OF BOSE-EINSTEIN CONDENSATES IN GROSS- PITAEVSKII APPROXIMATION Moscow, H.A. Ishkhanyan, V.P. Krainov.
Topological defects creation at fast transition: Kibble mechanism and Zurek scenario Experiments with neutrons: Vortex creation in 3He+n reaction Dark.
Carlo F. Barenghi School of Mathematics University of Newcastle, UK Exotic turbulence opportunities in superfluid helium.
3 He NMR in Aerogel Yu. Bunkov H. Godfrin E. Collin A.S. Chen D. Cousins R. Harakaly S. Triqueneaux J. Sauls J. Parpia W. Halperin Yu. Mukharskiy V. Dmitriev.
Dynamics of Polarized Quantum Turbulence in Rotating Superfluid 4 He Paul Walmsley and Andrei Golov.
Cosmology in superfluid 3 He Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Michael Browne 11/26/2007.
Rotating Superfluid 3 He in Aerogel Takao Mizusaki Department of Physics, Graduate School of Science, Kyoto University Collaborators: Kyoto University,
Quantum Technologies Conference, Toruń 1 The project „Photonic implementations of quantum-enhanced technologies” is realized within the TEAM.
Symmetry Breaking in Scalar, Spinor, and Rotating Bose-Einstein condensates Hiroki Saito FB18 Aug. 24, 2006 Univ. of Electro-Communications, Japan Tokyo.
Spin Dynamics of Superfluid 3 He in Aerogel Osamu Ishikawa Osaka City University.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
2007/11/02nEDM BOSTON1 Dressing Field Study Pinghan Chu University of Illinois at Urbana-Champaign nEDM Collaboration Boston Dressed.
VORTICES IN BOSE-EINSTEIN CONDENSATES TUTORIAL R. Srinivasan IVW 10, TIFR, MUMBAI 8 January 2005 Raman Research Institute, Bangalore.
Yuriy M. Bunkov CRTBT - CNRS, Grenoble, France Magnetic Superfluidity (from HPD to Q – ball)
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Measurements of the Leggett Frequency in 3 He-B in Aerogel V.V.Dmitriev, V.V. Zavjalov, D.Ye. Zmeev, N.Mulders + University of Delaware, USA Kapitza Institute,
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Theory of induced superconductivity in graphene
Non-Abelian Josephson effect and fractionalized vortices Wu-Ming Liu (刘伍明) ( Institute of Physics, CAS )
A review on the magnetism of 2D solid 3 He films Multiple-spin exchange in two dimensional systems CNRS - CRTBT Grenoble Ultra Low Temperature Group H.
Spin-orbital effects in frustrated antiferromagnets Oleg A. Starykh, University of Utah, DMR Electron spin resonance (ESR) measures absorption.
For long wavelength, compared to the size of the atom The term containing A 2 in the dipole approximation does not involve atomic operators, consequently.
Stationary Josephson effect throughout the BCS-BEC crossover Pierbiagio Pieri (work done with Andrea Spuntarelli and Giancarlo C. Strinati) Dipartimento.
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Subir Sachdev Superfluids and their vortices Talk online:
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Superconductivity: approaching the century jubilee A.A.Varlamov Institute of Superconductivity and Innovative Materials SPIN-CNR, Italy.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Exotic turbulence opportunities in superfluid helium
Biophysical Tools '04 - NMR part II
Atomic BEC in microtraps: Squeezing & visibility in interferometry
“fixed” object (phonon)
a = 0 Density profile Relative phase Momentum distribution
Application of BCS-like Ideas to Superfluid 3-He
Presentation transcript:

Yu. M. Bunkov H. Godfrin E. Collin A.S. Chen D. Cousins R. Harakaly S. Triqueneaux J. Elbs P. Hunger G. E. Volovik J. Sauls J. Parpia W. Halperin Yu. M. Mukharskiy V. V. Dmitriev T. Mizusaki M. Kubota A. Mitsubara Cold gas of magnons, collective behavior Yu. M. Bunkov Institute Neel, CNRS, Grenoble, France

Universe Magnetically ordered states Superfluids, superconductors BEC of spin waves?

Ideal gas Quantum gas BEC, superfluidity Paramagnetic Magnetically ordered Coherent precession HHH S x + iS y = S sin  e i  t +i   =  H loc ==

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). I.A.Fomin, JETP Letters v.40, p.1036, (1984). Normal 3 He ~100% Superfluid 3 He Coherent spin precession in Superfluid 3 He-B

Grenoble, 2003

( h = 1; c ~ v F ) T F = 0.1K, T exp = K Magnon spectrum Magnon mass Magnon density Temperature of BEC Spin waves in superfluid 3 He are ready to be condensed! G.Volovik

Gross-Pitaevskii equation Gradient energy Spin Supercurrent Chemical potential  L (z  Spectroscopic energy True energy at the rotating frame Dipole-dipole spin-orbit energy F = A + (B+  l  l 2 + Cl  l 4 C < 0 ll2ll2 F C > 0  =0 B+  <0B+  >0

Gross-Pitaevskii equation M II H M I H L II H Spin-Orbit interaction energy in 3 He-B

H    Mass superflow  kiki Spin supercurrent

L 104° R(n,  ) S H Dipole energy 0°  H x  =  H Dipole + magnetic gradient energy E x 104° 104°+   =  H Osheroff – Corruchini mode Brinkman – Smith mode   Bunkov, ICM, Kyoto, 2006 Coherent state

FdBphasa I J The magnetic relaxation leads to decrease of BEC region F D + F     =  L 2 /2  L  L )   =0  =0.05  = -  Yu.M. Bunkov and G.E. Volovik Bose-Einstein condensation of magnons in superfluid 3He J. of Low Temp. Phys. 150, 135, (2008)  H   Minimization of energy in the conditions of magnetization Conservation and the gradient of chemical potencial It can be compensated by a small resonance RF pumping Magnons BEC in the gradient of magnetic field F D = 0 for  <104° for  >104°

H H  RF

H H 

H H 

H H 

H H 

Phys.Rev.Lett v.62, p.1631, (1989).

H H  RF JMJM 22  0   QFS Florida 1989, AIP Conf. Proc., v.194, p.27. JETPh Letters, v.47, p.478, (1988).

Physica B, v.165, p.649 (1990). Frequency and amplitude of the signal from pick-up coil after Homogeneous excitation Quadrupole excitation Spin curent vortex

Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy,"Low frequency oscillations of the homogeneously precessing domain in 3He-B", Physica B, v.178, p.196, (1992). Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, "Twist Oscillations of Homogeneous Precession Domain in 3He-B", JETPh Letters, v.43, p.168, (1986).

HPD Catastropha PS Grenoble, 1999 Coherent, Magnetically Excited States Explanation: Yu. Bunkov, V. L’vov, G. Volovik, JETP Lett, (2006) Persistent signal: Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, Phys, Rev, Letters, v.69, p3092, (1992). Catastropha: Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, J.Nyeki, D.A.Sergatskov, Europhysics Letters, v.8, p.645, (1989).

Non-linear Stationary Spin Waves in Flared out texture NMR of Rotated superfluid 3He-B O.T.Ikkala, G.E.Volovik, P.Y.Hakonen, Yu.M.Bunkov, S.T.Islander, G.A.Haradze, JETP Letters v.35, p.416 (1982). Before rotationDuring rotationAfter rotation H

Grenoble experiments with Non-linear Stationary Spin Waves 0.25 Tc A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998).

Following Landau and Lifchitz we consider an anharmonic oscillator with a third order of nonlinearity Non-linear Stationary Spin-waves A.S. Chen,Yu. M. Bunkov, H. Godfrin, R. Schanen and F. Scheffler J. of Low Temp. Phys. 113, 693 (1998).

Magnons condensation in Q-balli In the orbital texture trap Yu.M. Bunkov, G.E. Volovik, Phys. Rev. Lett., 98, (2007). 3D axisymmetric trap.  xy 2 r 2 +  z 2 z 2 Yu.M. Bunkov “Persistent Signal; Coherent NMR state Trapped by Orbital Texture” J. Low Temp. Phys, 138, 753 (2005) CW NMR A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, 51, (1998), 113, 693 (1998).

Calculated by V. Golo programm.

3D axisymmetric trap.  xy 2 r 2 +  z 2 z 2 Angle L-H Non-ground-state Bose-Einstein condensates of magnons in superfluid 3He-B

3D axisymmetric trap.  xy 2 r 2 +  z 2 z 2 Angle L-H

HPD2 Institut NEEL, Grenoble

Superfluid 3 He-A in squeezed aerogel H d L d L T. Kunimatsu, T. Sato, K. Izumina, A. Matsubara,Y. Sasaki, M. Kubota, O. Ishikawa, T. Mizusaki, Yu.M.Bunkov Pisma v ZhETP, 86, 244 (2007)

1.The coherent transport of magnetization in superfluid 3He-B. 2.Its based only on an antiferromagnetic properties of 3He and can be found in other magnetically ordered materials. 3. The formation of domain with coherent precession of magnetization. 4. This excited state correspond to a Bose-Einstein Condensation of spin waves. 5. Josephson phenomena, critical current and phase slippage in a channel. 5.Different modes of HPD oscillations. 6.Horizontal and vertical Spin vortex. 7.HPD techniques was applied for studies of counterflow and mass vortices in 3He, new types of vortex - spin-mass vortex was observed 8.6 different states with coherent precession in A and B phases of 3He 9.Magon BEC was found recently in JYG. (Demokritov) Nature 443, 430 (2006). The Spin Superfluidity, the magnetic counterpart of mass superfluidity and electric supercondactivity was discovered and widely studied in Moscow, Grenoble, Lancaster, Ithaca, Helsinki, Kosice, Kyoto, Tokio, Los-Alamos and by many theoreticians. There was discovered and observed: