Foreground limits on the detectability of the B-mode by Bpol Enrique Martínez-González (IFCA) Marco Tucci (IAC) Bpol Meeting, 27-October-2006, Orsay.

Slides:



Advertisements
Similar presentations
Planck 2013 results, implications for cosmology
Advertisements

S-PASS, a new view of the polarized sky Gianni Bernardi SKA SA On behalf of the S-PASS team CMB2013, Okinawa, June th 2013.
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
Cleaned Three-Year WMAP CMB Map: Magnitude of the Quadrupole and Alignment of Large Scale Modes Chan-Gyung Park, Changbom Park (KIAS), J. Richard Gott.
1 Thesis Defense Talk Tuhin Ghosh (IUCAA) under the supervision of Prof. Tarun Souradeep (IUCAA) 5 th of March, 2012 Galactic and Cosmological Signals.
GHz Measurements of anomalous dust emission Richard Davis, Clive Dickinson, Rod Davies, Anthony Banday Paris.
FastICA as a LOFAR-EoR Foreground Cleaning Technique Filipe Abdalla and Emma Woodfield University College London with Saleem Zaroubi, Vibor Jelic, Panos.
Cambridge CMB meeting 20 th July 2009 CMB B-modes: Foregrounds Paddy Leahy, Clive Dickinson, Mike Preece, Mike Peel (Manchester)
Systematic effects in cosmic microwave background polarization and power spectrum estimation SKA 2010 Postgraduate Bursary Conference, Stellenbosch Institute.
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
Indo – SA Joint Astronomy Workshop, August 2012 / 22 Study of Foregrounds and Limitations to EoR Detection Nithyanandan Thyagarajan N. Udaya Shankar Ravi.
Photo: Keith Vanderlinde Detection of tensor B-mode polarization : Why would we need any more data?
SZE in WMAP Data Jose M. Diego & Bruce Partridge 2010, MNRAS, 402, 1179 La Thuile, March 2012.
Distinguishing Primordial B Modes from Lensing Section 5: F. Finelli, A. Lewis, M. Bucher, A. Balbi, V. Aquaviva, J. Diego, F. Stivoli Abstract:” If the.
N. Ponthieu March 30th, A few thoughts on scanning strategy F. R. Bouchet, M. Bucher, F. X. Désert, N. Ponthieu, M. Piat.
SPECTRA OF GALACTIC COMPONENTS OBSERVED BY WMAP R.D.Davies, R.J.Davis Jodrell Bank Observatory C.Dickinson California Institute of Technology A.J.Banday,
1 Model fitting AT20G ultra/hyper compact HII region visibilities and the nature of the 3mm excess Ron Ekers CSIRO Sydney, Sep 8, 2010.
Contamination of the CMB Planck data by galactic polarized emissions L. Fauvet, J.F. Macίas-Pérez.
Component Separation of Polarized Data Application to PLANCK Jonathan Aumont J-F. Macías-Pérez, M. Tristram, D. Santos
Zeldovich-Sakharov program at RATAN-600 “Cosmological Gene” project Ground based support of the Space CMB Missions Y.Parijskij et al Special Astrophysical.
The Cosmic Microwave Background. Maxima DASI WMAP.
Latest results on Anomalous Galactic Microwave Emission from the Cosmosomas Experiment José Alberto Rubiño Martín (IAC-Tenerife) Orsay, October 27 th,
N. Ponthieu Polarization workshop, IAS, Orsay, 09/15/ N. Ponthieu (IAS) The conquest of sky polarization The upper limits era First detections Prospects.
CMB polarisation results from QUIET
Galactic Magnetic Field Research with LOFAR Wolfgang Reich Max-Planck-Institut für Radioastronomie Bonn, Germany.
Gary Hinshaw NASA/GSFC From Quantum to Cosmos, Airlie Center VA, July year Results from WMAP with a Glimpse Ahead.
CMB large angular scale, full sky polarization anisotropy has been measured moderately well, but not well enough – The value of reionization fraction derived.
Princeton June 10th, 2015 Challenges and prospects for better intensity spectrum measurements Giorgio Sironi Physics Department University of Milano.
SLAC, May 12th, 2004J.L. Puget PLANCK J.L. Puget Institut d'Astrophysique Spatiale Orsay.
Dust polarization expectations The PILOT experiment J.-Ph. Bernard CESR Toulouse Dust polarization at long wavelengths J.-Ph. Bernard, Orsay, Bpol meeting.
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
High-Frequency GPS sources from the AT20G survey Paul Hancock - University of Sydney Australia Ron Ekers (ATNF, PI), Sarah Burke(Swinburne), Mark Calabretta.
Title Here Probing the Epoch of Reionization with the Tomographic Ionized-carbon Mapping Experiment (TIME) Jamie Bock Caltech / JPL CCAT Workshop, Boulder.
Aristeidis Noutsos The Galactic Magnetic Field from Pulsar RMs and the Low-Frequency Arrays Aristeidis Noutsos Jodrell Bank Centre for Astrophysics, Manchester,
“First Light” From New Probes of the Dark Ages and Reionization Judd D. Bowman (Caltech) Hubble Fellows Symposium 2008.
CMB & Foreground Polarisation CMB 2003 Workshop, Minneapolis Carlo Baccigalupi, SISSA/ISAS.
The CMB TE Cross Correlation and Primordial Gravitational Waves Nathan Miller CASS Journal Club 11/6/07.
US Planck Data Analysis Review 1 Christopher CantalupoUS Planck Data Analysis Review 9–10 May 2006 CTP Working Group Presented by Christopher Cantalupo.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Sgr A* from General Relativistic MHD Simulations Jason Dexter University of Washington With Eric Agol, Chris Fragile and Jon McKinney.
Australia Telescope 20 GHz survey (AT20G): An Update Ron Ekers (ATNF, PI),Sarah Burke(Haverford-Swinburne), Mark Calabretta (ATNF), Gianfranco De Zotti.
Joint analysis of Archeops and WMAP observations of the CMB G. Patanchon (University of British Columbia) for the Archeops collaboration.
Galactic Radioemission – a problem for precision cosmology ? Absolute Temperatures at Short CM-Waves with a Lunar Radio Telescope Wolfgang Reich Max-Planck-Institut.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
Conference Summary Ue-Li Pen
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
EBEx foregrounds and band optimization Carlo Baccigalupi, Radek Stompor.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
The low frequency Galactic polarisation foreground Xiaohui Sun & Wolfang Reich MPIfR
1 The Planck view of CMB Contamination from Diffuse Foregrounds Carlo Baccigalupi On Behalf of the Planck Collaboration KITP Conference, April 2013.
Fig. Blazar Sequence ( Fossati et al ) Blazar ・・・ ⇛ Blazar Sequence( Fossati et al ) This characteristic was discovered among bright blazars.
Planck Report on the status of the mission Carlo Baccigalupi, SISSA.
Analysis of Need to go to Space J. Bartlett, R. Battye, F. Bouchet, A. Challinor, K. Ganga, A. Jaffe, R. Stompor.
Observation and Data Analysis Activityin SPOrt and BaR-SPOrt Exp.s Ettore Carretti Bologna 7-9 January 2004.
2-Day IDAPP meeting INAF-IASF Bologna Student: Pietro Procopio Dr. Carlo Burigana University of Ferrara Dr. Nazzareno Mandolesi Internal tutor: External.
Foreground Contamination and the EoR Window Nithyanandan Thyagarajan N. Udaya Shankar Ravi Subrahmanyan (Raman Research Institute, Bangalore)
Blind Component Separation for Polarized Obseravations of the CMB Jonathan Aumont, Juan-Francisco Macias-Perez Rencontres de Moriond 2006 La.
On the detection of the tensor-to-scalar ratio r using the CMB B-modes
WMAP: Recent Results and Dark Energy L. Page, STScI, May 2008.
Observations of Near Infrared Extragalactic Background (NIREBL) ISAS/JAXAT. Matsumoto Dec.2-5, 2003 Japan/Italy seminar at Niigata Univ.
150GHz 100GHz 220GHz Galactic Latitude (Deg) A Millimeter Wave Galactic Plane Survey with the BICEP Polarimeter Evan Bierman (U.C. San Diego) and C. Darren.
Observations of SNR G at 6cm JianWen Xu, Li Xiao, XiaoHui Sun, Chen Wang, Wolfgang Reich, JinLin Han Partner Group of MPIfR at NAOC.
EGEE-III INFSO-RI Enabling Grids for E-sciencE EGEE and gLite are registered trademarks Constraints on primordial non-Gaussianity.
The Planck view of CMB Contamination from Diffuse Foregrounds
CMB physics Zong-Kuan Guo 《现代宇宙学》
Eyes on the Polarized Sky, Feet on the Ground
A Measurement of CMB Polarization with QUaD
Separating E and B types of CMB polarization on an incomplete sky Wen Zhao Based on: WZ and D.Baskaran, Phys.Rev.D (2010) 2019/9/3.
LFI systematics and impact on science
Presentation transcript:

Foreground limits on the detectability of the B-mode by Bpol Enrique Martínez-González (IFCA) Marco Tucci (IAC) Bpol Meeting, 27-October-2006, Orsay

Layout Expected polarized emission from Galactic and extragalactic foreground. Foreground subtraction errors. Limits on r using the Fisher matrix: Galactic Extragalactic Best strategy for measuring B-modes: All-sky versus a patch (30x30 degrees) Low frequencies versus high frequencies Sensitivity

Polarized emission from foregrounds Tucci, E.M.-G., Vielva, Delabrouille 2005, MNRAS, 360, 935 E-modeB-mode, r=0.1 S<1Jy  =0.1

E and B rms values versus frequency, FWHM=1 ° %-30% of WMAP  T rms Synchrotron GHz (Brown & Spoelstra) (  s =-3.1) ____ Low-latitude (1.4 GHz – 2.7 GHz) _ _ _ Abidin et al. 03 high-latitude (1.4 GHz) % of WMAP  Trms Dust ___ Prunet et al (  =1.7) …  m map + model 8 of Finkbeiner et al. 98  =0.1 Radio sources: S < 1, 0.2 Jy (Tucci et al. 04)

Residual power spectrum The residual foreground is the sum of two terms: foreground polarization error + spectral index uncertainty Two extreme cases for spectral index uncertainties: C1) Average spectral index C2) Pixel Dependent spectral index

Polarization power spectra at 100 GHz (infinite sensitivity) FWHM=1°  = 0.1 Sources with S < 1 Jy SynchrotronDust

Assumptions For the Fisher matrix only two parameters are considered: r, . The rest of the parameters are assumed to be accurately determined. Two extreme cases to estimate the Galactic expectral index residual: C1) using the mean value of the spectral index; C2) pixel by pixel. f sky ≈ 0.8 Extragalactic sources are masked using intensity information up to a 10% lost in number of pixels (for 1° resolution this implies S<150 mJy).

r lim for a Planck-like experiment

Bpol experiment: r lim (3  ) (FWHM=1°) Space missions: Planck-like mission with 30 times better sensitivity: 1x10 -3 SAMPAN case (100, 143, 217, 353 GHz, 83 nK degree): 8x x10 -3 (using Planck-LFI) Ground-based (30x30 degrees): Only bolometers (100, 150 GHz, 33 nK degree): 1.5x10 -2 (using Planck-LFI) (5000 bol.) Only radiometers (30, 90 GHz, 31 nK, 21 nK degree): 4x10 -1 (using Planck-HFI) (1000 rad. at 30 GHz, 4000 rad. at 90 GHz) (Note that the definition of r is: (Tucci et al. 05). The tensor-to-scalar ratio defined as the amplitude of tensor to scalar fluctuations (Leach et al. 02) is 1.78 x r for the concordance model).

Conclusions Assuming there is not any anomalous emission, given similar sensitivity high- frequency experiments obtain more stringent constraints on r than low-frequency ones. All-sky missions impose more stringent limits on r than ground-based ones with partial sky coverage. Radio sources with S