The Chinese University of Hong-Kong, September 2008 4- Statistical characterization of fracture How to include these microstructure-scale mechanisms into.

Slides:



Advertisements
Similar presentations
D. Bonamy, F. Célarié, C. Guerra-Amaro, L. Ponson, C.L. Rountree, E. Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces.
Advertisements

3 – Fracture of Materials
Elisabeth Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces CEA-Saclay The Chinese University of Hong-Kong, September.
Phase II Total Fatigue Life (Crack Initiation + Crack Propagation) SAE FD&E Current Effort 30 October 2012 at Peoria, IL.
Crystal Lattice Imperfections
VARISPOT FS BEHAVIOR IN COLLIMATED AND DIVERGING BEAMS: THEORY AND EXPERIMENTS Liviu Neagu, Laser Department, NILPRP, Bucharest-Magurele, Romania.
Preliminary Results of Pembina Cardium Core Analysis C.R. Clarkson and N. Solano (PhD Candidate) T O C © TOC, 2011.
Influence of pore-scale disorder on viscous fingering during drainage. Renaud Toussaint, Jean Schmittbuhl Institute of Globe Physics Strasbourg (IPGS/
Dongxiao Zhang Mewbourne School of Petroleum and Geological Engineering The University of Oklahoma “Probability and Materials: from Nano- to Macro-Scale”
Using Induced Seismicity to Predict and Monitor Reservoir Permeability Pathways STRM LLC.
1 ASTM : American Society of Testing and Materials.
Chapter 12: Michel, B.: Testing of Microcomponents. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition.
John Drozd Colin Denniston Simulations of Collision Times In Gravity Driven Granular Flow bottom sieve particles at bottom go to top reflecting left and.
1 Universality Classes of Constrained Crack Growth Name, title of the presentation Alex Hansen Talk given at the Workshop FRACMEET, Institute for Mathematical.
Crackling Noise JPS, Shekhawat, Papanikolaou, Bierbaum, …, Dahmen, Myers, Durin, Zapperi Jan March Oct Dec Month Magnitude 7 8 Hiroshimas Earthquakes:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Lara-Curzio et al. IGTI Page 1 of 45 Screening and Evaluation of Materials for Advanced.
Mechanical properties and domain wall mobility of LaGaO 3 perovskite over a first order phase transition Claire Jakeways, Richard Harrison and Simon Redfern.
The Chinese University of Hong-Kong, September 2008 Stochastic models of material failure -1D crack in a 2D sample - Interfacial fracture - 3D geometry.
Finite-Element-Based Characterisation of Pore- scale Geometry and its Impact on Fluid Flow Lateef Akanji Supervisors Prof. Martin Blunt Prof. Stephan Matthai.
Marine Boundary Layers Shear Stress Velocity Profiles in the Boundary Layer Laminar Flow/Turbulent Flow “Law of the Wall” Rough and smooth boundary conditions.
SOME SCALING PROPERTIES OF FRACTURE SURFACES 99th Statistical Mechanics Conference, May 2008 D. Bonamy, L. Ponson, E. Bouchaud GROUPE FRACTURE CEA-Saclay,
Atomistic Mechanism for Grain Boundary Migration: Molecular Dynamics Studies Hao Zhang a, David J. Srolovitz a, Jack F. Douglas b, and James A. Warren.
Crack Trajectory Prediction in Thin Shells Using FE Analysis
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Mechanical Properties
Satellite Data Assimilation into a Suspended Particulate Matter Transport Model.
OPTICAL SYSTEM FOR VARIABLE RESIZING OF ROUND FLAT-TOP DISTRIBUTIONS George Nemeş, Astigmat, Santa Clara, CA, USA John A. Hoffnagle,
École Polytechnique Fédérale de Lausanne (EPFL),
Effect of disorder on the fracture of materials Elisabeth Bouchaud Solid State Physics Division (SPEC) CEA-Saclay, France MATGEN IV, Lerici, Italy September.
Observations on Chaotic Failure Surface Trajectories in Bimrocks (Block-in-Matrix Rocks) Observations on Chaotic Failure Surface Trajectories in Bimrocks.
Laurent Ponson Institut Jean le Rond d’Alembert CNRS – Université Pierre et Marie Curie, Paris From microstructural to macroscopic properties in failure.
Objectives Students will be able to label a stress-strain diagram correctly indicating. Ultimate stress, yield stress and proportional limit. Students.
The Structures of Metals
Different Types of Fields to Describe the Earth. Anisotropy, heterogeneity SEM of shale (Josh et al., 2012)
Interface Roughening Dynamics of Spreading Droplets
SPACEPORT ENGINEERING & TECHNOLOGY National Aeronautics and Space Administration John F. Kennedy Space Center Analysis of Residual Stress and Fracture.
Slide 1AV Dyskin, Geomechanics Group. UWA. Australia Mechanics of Earth Crust with Fractal Structure by Arcady Dyskin University of Western Australia.
Characterization of the coupling between oceanic turbulence and Variability of coastal waters optical properties, using in- situ measurements and satellite.
TS day on CLIC 5 July 2007S. Sgobba, M. Aicheler1 → Correlation between RF, laser, US results → Properties – microstructure relationships, mechanisms →
The scaling of the strength of nuclear graphite Statistical aspects and Implications for testing Chris Wheatley.
November 14, 2013 Mechanical Engineering Tribology Laboratory (METL) Experimental and Analytical Investigation of Transient Friction Abdullah Alazemi Ph.D.
Strong Roughening of Spontaneous Imbibition Fronts Z. Sadjadi 1, H. Rieger 1 S. Grüner 2, P. Huber 2 1 Theoretical Physics, Saarland University 2 Experimental.
Presented by Statistical Physics of Fracture: Recent Advances through High-Performance Computing Thomas C. Schulthess Computer Science and Mathematics.
DAMAGE SPREADING PHASE TRANSITIONS IN A THEMAL ROUGHENING MODEL Yup Kim with C. K. Lee Kyung Hee Univ. Ref.: 1. Yup Kim and C. K. Lee, Phys. Rev E 62,
Elasticity I Ali K. Abdel-Fattah. Elasticity In physics, elasticity is a physical property of materials which return to their original shape after they.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Corrosion Investigations of Steels in Pb-Bi at FZK J. Konys, G. Müller, J. Knebel Materials -
The Snowball Effect: Statistical Evidence that Big Earthquakes are Rapid Cascades of Small Aftershocks Karen Felzer U.S. Geological Survey.
Sediment Transport Modelling Lab. The Law of the Wall The law of the wall states that the average velocity of a turbulent flow at a certain point is proportional.
Alumina Reinforced High Porosity Al-alloys with Extreme Hardness Dr. László A. Gömze 1, University of Miskolc, Miskolc, Hungary Tel.:
Paper manufacturing process = finger print in paper e.g. refining, retention, sizing, filler, initial dewatering, forming, pressing, drying, drying symmetry,
Problems 1. A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 82.4MPa√m. If, during service use, the plate is.
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
3. Fracture mechanisms in real materials  Fracture of crystals: Different fracture mechanisms The importance of plasticity  Quasi-brittle fracture: R-curve.
ATMIYA INSTITUTE OF TECHNOLOGY & SCIENCE MECHNICAL DEPARTMENT
Acoustical Society of America Meeting
Indo-Turkey Tripartite Program – Visit to IIT Kanpur
Crystal Lattice Imperfections
A. Navitski, S. Lagotzky, G. Müller
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
A Comparison of Profiling Float and XBT Representations of Upper Layer Temperature Structure of the Northwestern Subtropical North Atlantic Robert L.
(a) High density pores : Nf = 1.99×105
Small-Scale Characteristics of 45 GHz Based on Channel Measurement
MIT Amorphous Materials 8: Mechanical Properties
Volume 105, Issue 8, Pages (October 2013)
Height difference [nm]
Fracture mechanics Subjects of interest Introduction/ objectives
A new approach to strengthen grain boundaries for creep
2 different distributions of Phases
E =
Haris Skokos Max Planck Institute for the Physics of Complex Systems
Presentation transcript:

The Chinese University of Hong-Kong, September Statistical characterization of fracture How to include these microstructure-scale mechanisms into a statistical description ? Fracture surface = trace of propagating front Dynamics of crack propagation

zz hh x z h  =0.75 Self-affine surface 1/2 (nm) Slope :  = 0.75  hh zz 4- Statistical characterization of fracture

The Chinese University of Hong-Kong, September 2008 OUTLINE 1- Crack in 2D 2- Interfacial fracture 3- 3D crack propagation

The Chinese University of Hong-Kong, September 2008 Crack propagation in a 2D sample (Salminen et al.) Paper PMMA (Santucci et al.) 4- Statistical characterization of fracture

Position x(mm) Height h(x) (mm) The Chinese University of Hong-Kong, September 2008 Paper (Salminen & al, 03)

The Chinese University of Hong-Kong, September Statistical characterization of fracture x x+  x  h (r) y

4- Statistical characterization of fracture x x+  x y Zmax(  x) Paper (Salminen & al, 03) The Chinese University of Hong-Kong, September 2008  ≈

4- Statistical characterization of fracture R k (  x)/R k G Log 10 (  x/  0 ) PMMA Paper  x/  0  h k (  x)/R k G PMMA  ≈0.6 Paper  ≈0.6 S. Santucci et al., 07

The Chinese University of Hong-Kong, September Statistical characterization of fracture Interfacial fracture (K.J. Måløy et al.)

The Chinese University of Hong-Kong, September Statistical characterization of fracture Interfacial fracture (J. Schmittbuhl et al. 97) z(mm) x(mm) Log 10 (f) Log 10 (P(f))  ’≈0.55  ≈50  m ≈ size of heterogeneities

The Chinese University of Hong-Kong, September Statistical characterization of fracture x x x =28.1µm/s; a=3.5µm Interfacial fracture (K.J. Måløy et al. 06) Waiting time matrix: t=0 W(z,x)=0 t>0 W t (z,x)=1+W t-1 (z,x) if front in (z,x) Front location Spatial distribution of clusters (white) v(z,x)>10

The Chinese University of Hong-Kong, September Statistical characterization of fracture Interfacial fracture (K.J. Måløy et al. 06) 0.39µm/s≤ ≤40µm/s 1.7µm ≤a≤10µm C=3 Velocity distributionCluster size distribution Slope -1.6 Slope -2.55

Interfacial fracture, S. Santucci et al., 08 The Chinese University of Hong-Kong, September Statistical characterization of fracture

The Chinese University of Hong-Kong, September Statistical characterization of fracture Intermittency of interfacial crack propagation (A. Marchenko et al., 06)

Humid air n-tetradecane

The Chinese University of Hong-Kong, September Statistical characterization of fracture Humid air Tetradecane

The Chinese University of Hong-Kong, September Statistical characterization of fracture f(z) Out-of-plane Projection on the yz plane In-plane Projection on the xz plane Fracture of 3D specimens

Al-alloy & Ti 3 Al-based alloy 4- Statistical characterization of fracture P.Daguier et al. (95) x  ’≈

The Chinese University of Hong-Kong, September Statistical characterization of fracture Out-of-plane roughness measurements Polishing

The Chinese University of Hong-Kong, September Statistical characterization of fracture Al alloy Ni-plated BS SEM (E.B. et al., 89) r/  C(r)  r   ≈0.8

The Chinese University of Hong-Kong, September Statistical characterization of fracture Profiles perpendicular to the direction of crack propagation

The Chinese University of Hong-Kong, September Statistical characterization of fracture (P. Daguier & al., 96)  = 0.78 from 5nm to 0.5mm zz Profiles perpendicular to the direction of crack propagation (  z) (µm)

Aluminium alloy  =0.77 3nm  0.1mm The Chinese University of Hong-Kong, September Statistical characterization of fracture  = 0.77 Z max (  z) (µm)  z (µm) (M. Hinojosa et al., 98) Profiles perpendicular to the direction of crack propagation

The Chinese University of Hong-Kong, September Statistical characterization of fracture (J. Schmittbuhl et al, 95) Profiles perpendicular to the direction of crack propagation: granite  ≈0.8  ≈0.85

z (µm) direction of crack front x (µm) direction of crack propagation Anisotropy of fracture surfaces  ~ 0.8  ~ 0.6 Direction of crack propagation Direction of crack front Log(Δx), log(Δz) Log (Δh) L. Ponson, D. Bonamy, E.B. (05) The Chinese University of Hong-Kong, September Statistical characterization of fracture

Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-cristaux (STM) 130mm Δh 2D (Δz, Δx) = ( A ) 1/2  h (nm)  z (nm) AB ΔxΔx ΔzΔz L. Ponson, D. Bonamy, E.B. PRL 2006 L. Ponson et al, IJF 2006  h/  x   z/  x 1/ z  = 0.75  = 0.6 Z =  /  ~ 1.2 z

Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm Quasi-crystals Courtesy P. Ebert Coll. D.B., L.P., L. Barbier, P. Ebert z z  = 0.75  = 0.6 z =  /  ~ 1.2 h (Å) 4- Statistical characterization of fracture

Béton (Profilométrie) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm  = 0.75  = 0.6 z =  /  ~ 1.2  h/  x   z/  x 1/ z h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert 4- Statistical characterization of fracture

Mortar (Profilometry) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm  = 0.75  = 0.6 z =  /  ~ 1.2  h/  x   z/  x 1/ z Mortar (Coll. S. Morel & G. Mourot) h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert 4- Statistical characterization of fracture

Mortar (Profilometry) Glass (AFM) Metallic alloy (SEM+Stereo) Quasi-crystals (STM) AB ΔxΔx ΔzΔz 130mm  z/  x 1/z ( l z / l x ) 1/  (  z/ l z )/(  x/ l x ) 1/ z  h/  x  (  h/ l x )/(  x/ l x )  Universal structure function Very different length scales h (Å) Coll. D.B.,L.P.,L. Barbier,P. Ebert 4- Statistical characterization of fracture

The Chinese University of Hong-Kong, September Statistical characterization of fracture  Exponent  1mm Preliminary results (G. Pallarès, B. Nowakowski et al., 08)

The Chinese University of Hong-Kong, September Statistical characterization of fracture Exceptions… Sandstone fracture surfaces log(P(f)) log(f)  ≈0.47 (Boffa et al. 99)  z  P(  h)  h/(  z)  (Ponson at al. 07)

« Model » material : sintered glass beads (Coll. H. Auradou, J.-P. Hulin & P. Vié 06) Porosity 3 to 25% Grain size 50 to 200  m Vitreous grain boundaries  Linear elastic material The Chinese University of Hong-Kong, September Statistical characterization of fracture Exceptions…

ζ =0.4 ± 0.05 β =0.5 ± 0.05 z =ζ/β =0.8 ± independent exponents « Universal » structure function + Structure 2D Roughness at scales > Grain size 1/ z 4- Statistical characterization of fracture (Ponson et al. 06)

Summary Cracks propagating through disordered media oare rough self-affine (5 decades) ouniversal roughness exponents :  ’ ≈0.6  ≈0.8,  ≈0.6 oproceed through avalanches The Chinese University of Hong-Kong, September 2008 Not convincing for paper… at length scales < heterogeneity size… What about sandstone and sintered glass? HOW TO MAKE SENSE OF ALL THIS????????