DARWIN SCFAB 21 November 2002 page: 1 DARWIN in SPACE The Quest for LIFE beyond the Solar System Stockholm Observatory (6th floor)

Slides:



Advertisements
Similar presentations
THESIS – the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft a concept for a joint NASA/ESA exoplanet characterization mission.
Advertisements

Exoplanet Atmospheres: Insights via the Hubble Space Telescope Nicolas Crouzet 1, Drake Deming 2, Peter R. McCullough 1 1 Space Telescope Science Institute.
EXTRASOLAR PLANETARY SYSTEMS DETECTION METHODS, RESULTS AND PERSPECTIVES MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER 1 ST PLANETS SHOOL, HEIDELBERG,
Tim Healy Tony Perry Planet Survey Mission. Introduction Finding Planets Pulsar Timing Astrometry Polarimetry Direct Imaging Transit Method Radial Velocity.
Exploring a Nearby Habitable World …. Orbiting an M-dwarf star Drake Deming NASA’s Goddard Space Flight Center.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Somak Raychaudhury  Two-body problem  Binary stars  Visual  Eclipsing  Spectroscopic  How to find extrasolar planets.
Detectability of Habitable Planets with the Space Interferometry Mission Evan Bierman, Chris McCarthy, Debra Fischer, Geoff Marcy San Francisco State University.
Extrasolar planet detection: Methods and limits Ge/Ay133.
Habitable Planets Astronomy 315 Professor Lee Carkner Special Topic.
All About Exoplanets Dimitar D. Sasselov Harvard-Smithsonian Center for Astrophysics.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Extrasolar planet detection: Methods and limits Ge/Ay133.
The Next 25(?) Years Future Missions to Search for Extra-solar Planets and Life.
First direct image of extrasolar planets billion miles.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Lecture 8 Extrasolar planets detection methods and strategy.
Circumstellar disk imaging with WFIRST: not just for wide field surveys any more... Tom Greene (NASA ARC) & WFIRST Coronagraph Team AAS / WFIRST Session.
Extrasolar planet detection: Methods and limits Ge/Ay133.
8 Exoplanets Worlds Without End Copyright Lynette Cook, used with permission.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
3677 Life in the Universe: Extra-solar planets
Dr. Matt Burleigh 3677: Life in the Universe DEPARTMENT OF PHYSICS AND ASTRONOMY 3677 Life in the Universe Extra-solar planets: Revision Dr. Matt Burleigh.
What stellar properties can be learnt from planetary transits Adriana Válio Roque da Silva CRAAM/Mackenzie.
Exo-planets: ground-based How common are giant planets? What is the distribution of their orbits? –3.6m HARPS: long-term radial velocity monitoring of.
Lecture 34. Extrasolar Planets. reading: Chapter 9.
Exoplanets Saturday Physics for Everyone Jon Thaler October 27, 2012 Credit: NASA/Kepler Mission/Dana Berry.
Blue Dot Team « Multi aperture imaging ». BDT sept MAI techniques High accuracy visibility measurement Differential interferometry Nulling.
Spectral Analysis of atmospheres by nulling interferometry Marc OLLIVIER Institut d’Astrophysique Spatiale - Orsay.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
December 14, 2001MISU Page 1 DARWIN D etecting & A nalysing R emote W orlds through I nterferometric N ulling a vessel.
Extrasolar planets. Detection methods 1.Pulsar timing 2.Astrometric wobble 3.Radial velocities 4.Gravitational lensing 5.Transits 6.Dust disks 7.Direct.
Searches for exoplanets
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Will exobiology out of the Solar System stop after the DARWIN mission ? Marc Ollivier (1), Alain Léger (1), Pascal Bordé (2) and Bruno Chazelas (1) (1)
Methods for the detection of exosolar planets Astronomical Seminar January 2004 Erik Butz.
1B11 Foundations of Astronomy Extrasolar Planets Liz Puchnarewicz
1 An emerging field: Molecules in Extrasolar Planets Jean Schneider - Paris Observatory ● Concepts and Methods ● First results ● Future perspectives.
The Search for Extrasolar Planets Since it appears the conditions for planet formation are common, we’d like to know how many solar systems there are,
Characterising exoplanetary systems with space-based Bracewell interferometers ARC meeting Denis Defrère Liege, 19 February 2009.
Are We Alone? Chris De Pree RARE CATS June The Questions Are there other planetary systems? How do we detect other planetary systems? What is Life?
The Search for Extra-Solar Planets With thanks to Dr Martin Hendry / Prof Webster Cash Astrophysical.
Extra-terrestrial life: Is there anybody out there? Dr Martin Hendry University of Glasgow Reach for the Stars.
DARWIN The InfraRed Space Interferometer. Status of exo-planet search Stars (Solar type) observed: Planets detected: ~ 86 Radial velocity measurement.
Extrasolar planets Emre Işık (MPS, Lindau) S 3 lecture Origin of solar systems 14 February 2006.
Lecture 14: The Discovery of the World of Exoplanets Indirect methods for planet detection The Astrometric method The Doppler shift method The Transit.
Extra-Solar Planet Populations Stephen Eikenberry 4 November 2010 AST
Extra Solar Planets ASTR 1420 Lecture 17 Sections 11.2.
Extra-Solar Planetary Systems. Current Planet Count: 331 Stars with Planets: 282 Earthlike Planets: 0 Four of the five planets that orbit 55 Cancri.
The Search for Extra-Solar Planets Dr Martin Hendry Dept of Physics and Astronomy.
Extrasolar planets. Detection methods 1.Pulsar Timing Pulsars are rapidly rotating neutron stars, with extremely regular periods Anomalies in these periods.
Spectroscopy of extrasolar planets atmosphere
Extrasolar Planets Is there a twin of our Home Planetsomewhere out there? Gero Rupprecht, ESO Brandys,
Eva Meyer MPIA-Student-Workshop, Italy Various information from different detection methods.
Darwin/ Xtrasolar AlbaNova 1 December 2005 p 1
Extra-Solar Planet Populations George Lebo 10 April 2012 AST
Astronomy 3040 Astrobiology Spring_2016 Day-7. Homework -1 Due Monday, Feb. 8 Chapter 2: 1, 3, 16 23, 24, 26 29, 30, , 54, 56 The appendices will.
8 Exoplanets Worlds Without End Copyright Lynette Cook, used with permission.
Debris Disks - LBTI Phil Hinz University of Arizona.
Exoplanets: Direct Search Methods 31 March 2016 © 2014 Pearson Education, Inc.
Martin Ward. Our Solar System – unique or ubiquitous? A "planet" is defined as a celestial body that (a) is in orbit around the Sun, (b) has sufficient.
Terrestrial Planet Finder - Coronagraph
Chapitre 1- Introduction
Exoplanets: Indirect Search Methods
Habitability Outside the Solar System
Exoplanets Worlds Without End
Exoplanets EXOPLANETS Talk prepared by: Santanu Mohapatra(14PH20032)
3677 Life in the Universe: Extra-solar planets
PHYS 2070 Tetyana Dyachyshyn
New Worlds: Detection of Exoplanet systems
Presentation transcript:

DARWIN SCFAB 21 November 2002 page: 1 DARWIN in SPACE The Quest for LIFE beyond the Solar System Stockholm Observatory (6th floor)

DARWIN SCFAB 21 November 2002 page: 2 Contributors Announcement Robin Laurance [1999] Jean-Marie Mariotti [1998] Very Many People... Towards Other Earths 22 – 25 April 2003 Heidelberg, Germany web page:

DARWIN SCFAB 21 November 2002 page: 3 Outline Interdisciplinary Talk Astrophysics Biology Chemistry Philosophy... Introduction - Formation of Stars and Planets Scientific Goals Statement of the Problem Adopted Solution Current Developments and Implementation Look into the Future

DARWIN SCFAB 21 November 2002 page: 4 DARWIN … is a vessel D etecting and A nalysing R emote W orlds with I nterferometric N ulling

DARWIN SCFAB 21 November 2002 page: 5

DARWIN SCFAB 21 November 2002 page: 6 Theory of Star & Planet Formation 1 AU = 150 Million km 1 pc = AU 1 pc = 3 lightyears * *

DARWIN SCFAB 21 November 2002 page: 7 Hubble Space Telescope protoplanetary disk + hidden star supersonic plasma jet Observational Evidence - Newly Formed Star

DARWIN SCFAB 21 November 2002 page: 8 Observational Evidence for exo-Planets P = 1 yr Earth: km/h Sun: 0.3 km/h M sin i 1 AU Observing the STARS

DARWIN SCFAB 21 November 2002 page: 9 Observational Evidence for exo-Planets: observing the Stars 1995: THE Breakthrough – 51 Peg Mayor & Queloz 1995 Nature 378, V (m/s) Phase

DARWIN SCFAB 21 November 2002 page: 10 Observational Evidence for exo-Planets: observing the Stars

DARWIN SCFAB 21 November 2002 page: 11 HD HST I (%) t – t 0 (days) Observational Evidence for exo-Planets: Observing the Stars Planetary Hypothesis = true Planetary Mass = 0.7 M Jupiter Planetary Radius = 1.4 R Jupiter

DARWIN SCFAB 21 November 2002 page: >100 exos M = O(M Jupiter ) ``Hot Jupiters´´

DARWIN SCFAB 21 November 2002 page: 13 Mass Distribution Function of Exos => Existence of Many Earth-like ?

DARWIN SCFAB 21 November 2002 page: 14 Radial Velocity Technique...does not provide this

DARWIN SCFAB 21 November 2002 page: 15 Stating the GOALS [ 1 ] find Earth like Planets [ 2 ] look for signs of Life ?...piece of cake...?

DARWIN SCFAB 21 November 2002 page: 16 [ 1 ] Finding exo-Earths Different Stellar Temperatures – needs Variable Resolution Short Lifetime Brown Dwarfs

DARWIN SCFAB 21 November 2002 page: 17 [ 2 ] Identifying LIFE What does ALL Life DO? Life Produces WASTE ! Origin of Life?Definition of Life?

DARWIN SCFAB 21 November 2002 page: 18 Statement of the Problem Earth like planet ? with LIFE? 51 Pegasi

DARWIN SCFAB 21 November 2002 page: 19 Possible Solutions – Possible Techniques Radial Velocity: NOT feasible (9 cm/s; contamination by convection and big planets) Astrometry: feasible from SPACE (<3  arcsec) Occultation: feasible from SPACE (<0.01%) Micro Lensing: single event (hours; little information) …needs observatories in SPACE!

DARWIN SCFAB 21 November 2002 page: 20 Selection of Spectral Region Scattered Stellar Radiation Planetary Thermal Emission VisibleInfraRed log 10 => Space!

DARWIN SCFAB 21 November 2002 page: 21 Selection of Observational Method Two (known) possibilities: New Concept “Nulling’’ Interferometer in Space  Telescopes = m  Base Lines = m  Feasible! Coronograph in Space  Telescope > 30 m  NOT Realistic! this is it!

DARWIN SCFAB 21 November 2002 page: 22 Interferometry We gain resolution...So, what do we loose? Image information content

DARWIN SCFAB 21 November 2002 page: 23 D B d/2 Filled aperture D: contains all spatial frequencies up to 1/D => Image of the source Interferometer B: picks out 1 spatial frequency 1/B in coherent field of view 1/d Example:  = 10  m, B = 200 m, d = 2 m Resolution = 10 milliarcsec Field of view = 1 arcsec

DARWIN SCFAB 21 November 2002 page: 24 simplest case: 2 element Bracewell interferometer Nulling Interferometer: Point Sources ``flat bottom´´ High Rejection Rate: > 10 5 to ``null´´ stellar radiation e.g. at 10 pc distance Sun m 10  m = 3.6 (1.6 Jy)* Earth m 10  m = 20.7 (0.23  Jy) * 1 Jy = W m -2 Hz -1 star on optical axis  = 0 =

DARWIN SCFAB 21 November 2002 page: 25 DARWIN Simulation of Solar System at 10 pc distance Date: January 1, 2001 Ecliptic inclined by 30° nulled Sun VenusEarth Mars Mennesson & Mariotti (1997) WHAT is observed (1) Multi-Epoch Imaging Discovery of Earth like exo-Planets

DARWIN SCFAB 21 November 2002 page: 26 WHAT is observed (2) Spectroscopy IR Spektra – Fingerprints of the Planets CO 2 CH 4 H 2 O O 3 …. IR emission: 300K BB continuum radiation IR absorption: spectral lines êPhysics & Chemistry of Planetary Atmospheres

DARWIN SCFAB 21 November 2002 page: 27 The Living Atmosphere THE BIOmarkers! CO 2 H2OH2O H2OH2O O3O3 Wavelength (  m) Intensity Intensity Sagan et al Nature 365, 715 Venus, Earth & Mars

DARWIN SCFAB 21 November 2002 page: 28 The Search for Biospheres Life on Earth as a reference: C-based chemistry in H 2 O solution ….produces Oxygen wavelength (  m) O2O2 O 2 + O + M  O 3 + M Oxygen Photosynthesis 2H 2 O + CO 2 + 8h  CH 2 O + O 2 + H 2 O O3O3

DARWIN SCFAB 21 November 2002 page: 29 Oxygen Production = Life? same processes that produce abiotic O 2 destroy O 3 (radicals from H 2 O photolysis) or mask the O 3 signature (CO 2 absorption) Claim: photochemistry CANNOT reproduce triple signature of oxygen photosynthesis O 3 - CO 2 - H 2 O Selsis et al. 2002, Astron. & Astrophys. 388, 985

DARWIN SCFAB 21 November 2002 page: 30 DARWIN 2 Three-DACs (Laurance) = 6 Telescopes (Free Flyers) 1 Hub (Beam Combiner) + 1 Master Satellite IRSI InfraRed Space Interferometer

DARWIN SCFAB 21 November 2002 page: 31 Orbit of Sun-Earth L2 toward the Sun toward the Sun km top view side view

DARWIN SCFAB 21 November 2002 page: 32 Noise Control - Backgrounds Stellar Leaks Zodiacal Background Exo-Zodi Photon Noise from Planet

DARWIN SCFAB 21 November 2002 page: 33 Noise Sources

DARWIN SCFAB 21 November 2002 page: 34 Target Selection (t int ) Stellar Leak ~ L Star D 2 R Planet - 4  optimised systems: - Low L Star : Cool Stars (M, K) - Nearby: < 100 pc - Big Planets: > 0.1 R Tellus - Not in (close) Stellar Binaries Angular Resolution (for planet in Habitable Zone)  Planet = 100 (L Star / L Sun ) 1/2 (1/D 10pc ) [mas] è adjustable configuration (unresolved stellar disk) Signal-to-Noise (S/N)

DARWIN SCFAB 21 November 2002 page: 35 some Major Performance Requirements Nulling of on-axis-Star > 10 5 Baseline Accuracy 1 cm (rms) Optical Path Difference 20 nm (rms) Telescope Pointing 24 mas (rms) Amplitude Matching < 10 -2

DARWIN SCFAB 21 November 2002 page: 36 Ongoing Developments & Future Planning Joint Mission 22 april 2002 GENIE (VLTI) 2003 SMART-2 (ff, metrol) 2006 COROT (occultation) 2004 Eddington (occult.) 2008 Kepler (NASA) 2009 JWST (``NGST´´) 2010

DARWIN SCFAB 21 November 2002 page: 37 Ongoing Developments & Future Planning Launch on Ariane-5 5E/CB Conclusions: [1] find exo-Earths [2] find signs of Life Darwin can do it!

DARWIN SCFAB 21 November 2002 page: 38

DARWIN SCFAB 21 November 2002 page: 39 Towards Other Earths Darwin/TPF and the Search for Extrasolar Terrestial Planets 22 – 25 April 2003 Heidelberg, Germany web page:

DARWIN SCFAB 21 November 2002 page: 40

DARWIN SCFAB 21 November 2002 page: 41 The End

DARWIN SCFAB 21 November 2002 page: 42 Hydrodynamics of Star Formation

DARWIN SCFAB 21 November 2002 page: 43 Earth and Cows

DARWIN SCFAB 21 November 2002 page: 44

DARWIN SCFAB 21 November 2002 page: 45 CO CO 2 UV O2O2 O H2OH2O O H O2O2 OH escape CO CO 2 UV O2O2 O abiotic = photochemical O 2 production

DARWIN SCFAB 21 November 2002 page: 46 Abotic Production of O 2 by H 2 O Photolysis CO 2 O3O3 H2OH2O H2OH2O Intensity Wavelength (  m) Selsis et al. 2002, Astron. & Astrophys. 388, 985

DARWIN SCFAB 21 November 2002 page: 47 2H 2 O + CO 2 + h  CH 2 O + O 2 + H 2 O the oxygen producers oxygenic photosynthesis : Cyanobacteria

DARWIN SCFAB 21 November 2002 page: 48 The late Rise of Oxygen ( Gyrs ago) Holland, 1993 P O2 < 1 % P.A.LP O2 > 15 % P.A.L Time (Gyrs)

DARWIN SCFAB 21 November 2002 page: ,51,52,53,51,02,03,0 AU time (Gyr) Kasting et al bar of CO 2 50 mbar of CO 2 0,3 mbar of CO 2 CO 2 greenhouse effect not anymore efficient water escape Solar luminosity Temporal evolution of the Habitable Zone

DARWIN SCFAB 21 November 2002 page: 50 CH 4 required for surface liquid water present CO 2 CO 2 > present CO 2 O 2 < 1 % present O 2 O 2 > 15 % present O 2 Temporal evolution of the Sun

DARWIN SCFAB 21 November 2002 page: 51 H2OH2O CO NO NO 2 CO 2 SO 2 CH 4 H2OH2O Temporal Evolution of the Planets ? ? 4,5 Gyrs t ? Venus The Earth Mars O3O3 CO 2 H2OH2O

DARWIN SCFAB 21 November 2002 page: 52 Beam Combination (1)

DARWIN SCFAB 21 November 2002 page: 53 Beam Combination (2)

DARWIN SCFAB 21 November 2002 page: 54 Beam Combination (3)

DARWIN SCFAB 21 November 2002 page: 55 Beam Combination (4) 50/50 beamsplitter v 11/89 beamsplitter 

DARWIN SCFAB 21 November 2002 page: 56 Telescope Flyers

DARWIN SCFAB 21 November 2002 page: 57 Telescope Optical Design Transfer optics Field stop 1.5 m primary Wide Field Camera

DARWIN SCFAB 21 November 2002 page: 58 Beamcombiner (1)

DARWIN SCFAB 21 November 2002 page: 59 Beamcombiner (2) Optical benchReceiver telescopes Beam splitters Amplitude matching device Delay lines

DARWIN SCFAB 21 November 2002 page: 60 Noise Sources Example: Earth & Sun at 10 pc,  = 10  m,  = 20  background noise must be controlled

DARWIN SCFAB 21 November 2002 page: 61 Noise Sources Example 2: sources:- shot noise from mean value - variation of instantaneous values e.g. stellar leaks:    leaks = [ 1/  I  + P (1/  ( o ) I   ]  t  shot noise Power Spectral Density

DARWIN SCFAB 21 November 2002 page: 62