S-Process in low metallicity Pb stars: comparison between new theoretical results and spectroscopic observations Sara Bisterzo (1) Roberto Gallino (1),

Slides:



Advertisements
Similar presentations
THE EFFECT OF 12 C(α,γ) 16 O ON WHITE DWARF EVOLUTION Pier Giorgio Prada Moroni Dipartimento di Fisica - Università di Pisa Osservatorio Astronomico di.
Advertisements

Neutron-capture Elements in M15 Kaori Otsuki (U Chicago), S. Honda, W. Aoki, T. Kajino (NAOJ) J. W. Truran, V. Dwarkadas, A. Medina (U Chicago) G. J. Mathews.
Carbon Enhanced Stars in the Sloan Digital Sky Survey ( SDSS ) T. Sivarani, Young Sun Lee, B. Marsteller & T. C. Beers Michigan State University & Joint.
Effects of Non-Solar Abundance Ratios on Star Spectra: Comparison of Observations and Models. Overview:-  Importance of element abundances  New measurements.
Probing the first stars with metal poor stars
Asymptotic Giant Branch. Learning outcomes Evolution and internal structure of low mass stars from the core He burning phase to the tip of the AGB Nucleosynthesis.
Lithium abundance in the globular cluster M4: from the Turn-Off up to the RGB Bump Collaborators: M. Salaris (University of Liverpool, UK) L. Lovisi, F.R.
Metal Poor Stars Jeff Cummings Indiana University April 15, 2005.
The Group of Bootis Stars Dr. Ernst Paunzen Institute for Astronomy University of Vienna.
S-Process in C-Rich EMPS: predictions versus observations Sara Bisterzo (1) Roberto Gallino (1) Oscar Straniero (2) I. I. Ivans (3, 4) and Wako Aoki, Sean.
Branchings, neutron sources and poisons: evidence for stellar nucleosynthesis Maria Lugaro Astronomical Institute University of Utrecht (NL)
INAF-Osservatorio Astronomico di Padova Dipartimento di Astronomia, Università di Padova.
Helium-enhancements in globular cluster stars from AGB pollution Amanda Karakas 1, Yeshe Fenner 2, Alison Sills 1, Simon Campbell 3 & John Lattanzio 3.
Abundances in Presolar Grains, Stars and the Galaxy Larry R. Nittler Department of Terrestrial Magnetism Carnegie Institution of Washington.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Dec 2003 Abundances in NGC6752.
The R parameter Observational data on the R parameter The effect of 12 C+  The Helium abundance Differences in the treatment of convection The effect.
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
New star formation scenarios in stellar systems Paolo Ventura INAF - Osservatorio Astronomico di Roma - Italy.
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio Abundances in M71.
Institute for Astronomy and Astrophysics, University of Tübingen, Germany July 5, 2004Cool Stars, Stellar Systems and the Sun (Hamburg, Germany)1 Turning.
The r+s CEMP stars and AGB supernovae Maria Lugaro University of Utrecht (NL)
The massive zero metal stars: their evolutionary properties and their explosive yields. Alessandro Chieffi Istituto Nazionale di AstroFisica (Istituto.
AGB stars Inma Dominguez Sergio Cristallo Oscar Straniero.
New Constraints on Neutron- Capture Nucleosynthesis Processes Inese I. Ivans California Institute of Technology Hubble Fellows Symposium April 7, 2005.
The synthesis of 26 Al, 60 Fe and 44 Ti in massive stars and their current inventory in our Galaxy Alessandro Chieffi Istituto Nazionale di AstroFisica.
1 Explosive nucleosynthesis in neutrino-driven, aspherical Pop. III supernovae Shin-ichiro Fujimoto (Kumamoto NCT, Japan) collaboration with M. Hashimoto.
NGC 2419 – the most bizarre Galactic globular cluster Judith Cohen (Caltech) & Evan Kirby (UC Irvine/Caltech) Conference: Small Stellar Systems, Tuscany,
“ Analysis and interpretation of stellar spectra and nucleosynthesis processes in evolved stars ” D. A. García-Hernández (IAC Support Astronomer) Instituto.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
Galactic Helium-to-Metals enrichment ratio from the analysis of local main sequence stars observed by HIPPARCOS 52° Congresso SAIt – Teramo 2008 * Università.
Chapter 16 – Chemical Analysis Review of curves of growth –The linear part: The width is set by the thermal width Eqw is proportional to abundance –The.
Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2.
Early Galactic Nucleosynthesis: The Impact of HST/STIS Spectra of Metal-Poor Stars Chris Sneden University of Texas.
14 N/ 15 N ratios in AGB C-stars and the origin of SiC grains Eurogenesis- Perugia Workshop, Nov 12-14, 2012 C. Abia R. Hedrosa (Granada) B. Plez (Montpellier)
Eugenio Carretta INAF- Osservatorio Astronomico di Padova L’anticorrelazione Na-O: sonda per la formazione e la prima evoluzione degli ammassi globulari?
Abundance Patterns to Probe Stellar Nucleosynthesis and Chemical Evolution Francesca Primas.
Setting the Stage for Evolution & Nucleosynthesis of Cluster AGB Stars Using Pulsation Analysis Devika Kamath Research School of Astronomy & Astrophysics.
The s-process in low metallicity stars Roberto Gallino (1) Sara Bisterzo (1) Oscar Straniero (2) I. I. Ivans (3, 4) F. Kaeppeler (5) (1) Dipartimento di.
Study of the s-process in low mass stars of Galactic disc metallicity
Yields from single AGB stars Amanda Karakas Research School of Astronomy & Astrophysics Mt Stromlo Observatory.
LMS & IMS: their evolution, nucleosynthesis and dusty end S. Cristallo in collaboration with Oscar Straniero and Luciano Piersanti Osservatorio Astronomico.
M5 = NGC 5904 ( nearest “intermediate-metallicity” globular cluster accessible from a northern hemisphere site ) Harris (2003, Feb version) 7.5kpc from.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
The Chemistry of Extrasolar Planetary Systems Jade Bond PhD Defense 31 st October 2008.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Oct 2003 Abundances in M92.
The Abundances of Light Neutron- Capture Elements in Planetary Nebulae Nick Sterling NASA Goddard Space Flight Center June 19, 2007 Collaborators: Harriet.
“Why are massive O-rich AGB stars in our Galaxy not S-stars?” D. A. García-Hernández (IDC-ESAC, Madrid, Spain) In collaboration with P. García-Lario (IDC-ESAC),
The Cecilia Payne-Gaposchkin Lecture Center for Astrophysics May 9, 2002.
O. Straniero, L. Piersanti (Osservatorio di Teramo, INAF) R. Gallino (Universita’ di Torino) I. Dominguez (Univerdad de Granada) Light and heavy elements.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
The origin of the elements heavier than iron
Topics in Astronomical Spectroscopy : Evolution of Chemical Abundances based on the High Resolution Stellar Spectroscopy 2010, 1 학기 대학원 이상각 19 동
Matteo Cantiello Astronomical Institute Utrecht Binary star progenitors of long GRBs M. Cantiello, S.-C. Yoon, N. Langer, and M. Livio A&A 465, L29-L33.
The Adventures of a Thermally Pulsating AGB Star
Chemical enrichment mechanisms in Omega Centauri:
Color and Metallicity Distributions of M81 Globular Clusters
The neutron capture cross section of the s-process branch point 63Ni
p-process in SNIa: new perspectives R. Gallino C. Travaglio
Mysterious Abundances in Metal-poor Stars & The ν-p process
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
New Trends of Physics 2005, Hokkaido University, March 1
Chapter 16 – Chemical Analysis
The Giant Branches Workshop - Lorentz Center,
Mikako Matsuura National Astronomical Observatory of Japan
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
Midwest Workshop on SUPernovae and TRansients Niharika Sravan
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Presentation transcript:

s-Process in low metallicity Pb stars: comparison between new theoretical results and spectroscopic observations Sara Bisterzo (1) Roberto Gallino (1), Oscar Straniero (2), I. I. Ivans (3, 4), F. Käppeler (5) and Wako Aoki, Sean Ryan, Timoty C. Beers (1) Dipartimento di Fisica Generale, Università di Torino, (To) Italy (2) Osservatorio Astronomico di Collurania – Teramo, (3) The Observatories of the Carnegie Institution of Washington, Pasadena, CA, (USA) (3) The Observatories of the Carnegie Institution of Washington, Pasadena, CA, (USA) (4) Princeton University Observatory, Princeton, NJ (USA) (5) Forschungszentrum Karlsruhe, Institut für Kernphysik, D Karlsruhe, Germany VIII Torino Workshop, Granada, 6 – 11 Febr. 2006

Outline: Lead stars (C, s, Pb rich) Lead stars (C, s, Pb rich) C and s+r rich Lead stars C and s+r rich Lead stars s-enhanced stars and Pb predictions s-enhanced stars and Pb predictions Nb: indicator of an extrinsic AGB in a binary system Nb: indicator of an extrinsic AGB in a binary system Na (and Mg): permits an estimate of the initial AGB stellar mass. Na (and Mg): permits an estimate of the initial AGB stellar mass.

AGB models at very low [Fe/H] M = 1.5 Msun 1.2 M sun < M < 3 M sun 13 C-pocket: ST*2 …. ST/100 Constant pulse by pulse ( ST: M sun, [Fe/H] = -0.3, Reproduction of Solar Main Component ) 1.2 Msun  3 pulses 1.3 Msun  6 pulses 1.4 Msun  8 pulses 1.5 Msun  20 pulses 2 Msun  26 pulses 3 Msun  30 pulses Mass loss : from to M sun /yr  Reimers 1.2 Msun  η = Msun  η = Msun  η = Msun  η = Msun  η = Msun  η = 1

Extrinsic AGB models Diluition factor: used to simulate the mixing effect in the envelope of the extrinsic stars Note:  for main sequence stars dil ≈ 0  for giants dil may be important

[ls/Fe] versus [Fe/H] ls = [ls/Fe] versus [Fe/H] ls = M = 1.3 M Θ M = 1.5 M Θ M = 2 M Θ M = 3 M Θ

Example: ST/12 at [Fe/H] = -2.5 [hs/ls] versus [Fe/H] M = 1.3 M Θ M = 1.5 M Θ M = 2 M Θ M = 3 M Θ Example: ST/2 at [Fe/H] = -2 0

[hs/ls] for different masses at [Fe/H] = -2.6  1.5 dex  1 dex

[Pb/hs] versus [Fe/H]

To reproduce stars with both s+r enhancements Different choice of initial chemical abundances of Eu in the progenitor clouds [Eu/Fe] ini from 0.5 to 1.5 and 2.0

Effect of pre r-enrichment in s-enhanced stars Model with pre r-enrichment normalized to [Eu/Fe] ini = 2.0 in the parental cloud: the envelope abundances in these stars are predicted by mass transfer from the more massive AGB companion in a binary system which formed from a parental cloud already enriched in r elements. r-process rich AGB star model of M = 1.3 M sun with [Fe/H] = NO r-process rich [Eu/Fe] ini = 2.0[Eu/Fe] ini = 0.0

Choice of initial abundances The choice of the initial r-rich isotope abundances normalised to Eu is made considering the r- process solar prediction from Arlandini et al.1999.

1- Lead stars (C, s, Pb rich) 2 – C and s+r rich Lead stars

1. J. A. Johnson, M. Bolte, ApJ 579, L87 (2002) 2. W. Aoki, et al., ApJ 580, 1149 (2002) 3. T. Sivarani, et al., A&A 413, 1073 (2004) 4. J. A. Johnson, M. Bolte, ApJ 605, 462 (2004) 5. W. Aoki, et al., PASJ 54, 427 (2002) 6. S. Van Eck et al., A&A 404, 291 (2003) 7. S. Lucatello, et al., AJ 125, 875 (2003) 8. J. G. Cohen et al., ApJ 588, 1082 (2003) 9. B. Barbuy, et al., A&A 429, 1031 (2005) 10. I. Ivans et al., ApJ 627, 145 (2005) 11. K. Jonsell et al., astroph 1476J (2006)

T eff = 5850 CS Aoki et al. 2002

HE Lucatello et al T eff = 6625

2 – C and s+r rich Lead stars

0.0 Without r-process enhancement  [Eu/Fe] ini = 0.0 With r-process enhancement  [Eu/Fe] ini = 2.0 HE Cohen et al M ≈ 1.3 M sun T eff = 6380 K

With r-process enhancement  [Eu/Fe] ini = 2.0 T eff = 6160 Jonsell et al astroph

CS Barbuy et al With r-process enhancement  [Eu/Fe] ini = 1.5 T eff = 4800

CS Aoki et al With r-process enhancement  [Eu/Fe] ini = 1.8 T eff = 5600

Barklem et al. 2005: s-enhanced stars ** Pb predictions 12. Barklem et al., A&A 439, 129 (2005)

HE Barklem et al T eff = 6132 Pb prediction  3 With r-process enhancement  [Eu/Fe] ini = 1.8

HE Barklem et al T eff = 5960 Pb prediction  3.5 Without r-process enhancement

[Pb/Fe] versus [Fe/H]

[Pb/hs] versus [Fe/H]

AGB models of M = 1.3, 1.5, 3 M sun, for the same 13 C-pocket, at [Fe/H] = – A strong primary production of 22 Ne results in advanced pulses, by conversion of primary 12 C to 14 N in the H-burning ashes, followed by 2a captures on 14 N in the thermal pulses and implies a primary production of 23 Na via 22 Ne(n,  ) 23 Na, (and 23 Na(n,  ) 24 Na(  - ) 24 Mg). Spectroscopic Na (and Mg)  Stellar Mass prediction

The s elements enhancement in low-metallicity stars interpreted by mass transfer in binary systems (extrinsic AGBs). For extrinsic AGBs [Zr/Nb] ~ 0. Instead, for intrinsic AGBs [Zr/Nb] ~ 1. Zr over Nb: Intrinsic or Extrinsic AGBs s-process path

CONCLUSIONS: The spectroscopic abundances of low-metallicity s- and r-process enriched stars are interpreted using theoretical AGB models (FRANEC CODE), with an initial composition already enriched in r elements from the parental cloud from which the binary system was formed. [Zr/Nb] is an indicator of an extrinsic AGB in a binary system: [Zr/Nb] ~ 0 for an extrinsic AGB, [Zr/Nb] ~ – 1 for an intrinsic AGB. [Zr/Nb] is an indicator of an extrinsic AGB in a binary system: [Zr/Nb] ~ 0 for an extrinsic AGB, [Zr/Nb] ~ – 1 for an intrinsic AGB. Spectroscopic determination of [Na/Fe] and [Mg/Fe] permits an estimate of the initial AGB stellar mass. Spectroscopic determination of [Na/Fe] and [Mg/Fe] permits an estimate of the initial AGB stellar mass.

CONCLUSIONS: Open Problem: the strong discrepancy of C and N predictions with respect to observations may be reconciled: Open Problem: the strong discrepancy of C and N predictions with respect to observations may be reconciled: (1) by introducing the effect of cool bottom process (CBP) in the TP-AGB phase (*); (2) for N and [Fe/H] < -2.3, by the effect of Huge First TDU. (3) Uncertainties in the spectroscopic abundances of C, N, O, Na, Mg  M. Asplund, ARAA 2005 (*) Nollett, K. M., Busso, M., Wasserburg, G. J., ApJ 582, 1036 (2003); Wasserburg, G. J., Busso, M., Gallino, R., Nollett, K. M., (2006), Nucl. Physics, in press.

[hs/Fe] versus [Fe/H] hs = [hs/Fe] versus [Fe/H] hs = M = 1.3 M Θ M = 1.5 M Θ M = 2 M Θ M = 3 M Θ