Analysis and Synthesis: Analysis start with a logic diagram and proceed to a formal description of the function performed by that circuit, such as a truth table or a logic expression. 4.1 Switching Algebra ReturnNext 1. Introduction Logic circuits are classified into two types: Combinational: whose outputs depend only on its current inputs. Sequential: depend not only on the current inputs but also on the past sequence of inputs, possibly arbitrarily far back in time.
4.1 Switching Algebra NextBackReturn Synthesis do the reverse, starting with a formal description and proceeding to a logic diagram. 2. Axioms 1+0=0+1=1A5’0 · 1=1 · 0=0A5 0+0=0A4’1 · 1=1A4 1+1=1A3’0 · 0=0A3 if x=1, then x=0A2’if x=0, then x=1A2 x=1 if x≠0A1’x=0 if x≠1A1
4.1 Switching Algebra NextBackReturn 3. Theorems with One Variable x · x=0T5’x+x=1T5 T4’x =xT4 x · x=xT3’x+x=xT3 x · 0=0T2’x+1=1T2 x · 1=xT1’x+0=xT1 Identities Null elements Idempotency Complements Involution
4.1 Switching Algebra NextBackReturn 4. Theorems with multi-variable I x · y+x · z=x · (y+z)T8 (x+y)+z=x+(y+z)T7 x+y=y+xT6 (x+y) · (x+z)=x+y · zT8’ (x · y) · z=x · (y · z)T7’ x · y=y · xT6’ Commutativity Associativity Distributivity
4.1 Switching Algebra NextBackReturn (x+y) · (x+z) · (y+z)= (x+y) · (x+z) (x+y) · (x+y)=xT10’ x · y+x · y=xT10 x · (x+y)=xT9’ x+x · y=x T9 Combining Covering T11’ T11 Consensus x · y+x · z+y · z=x · y+x · z 4. Theorems with multi-variable II
4.1 Switching Algebra NextBackReturn 4. Theorems with multi-variable III F(x 1, x 2, … x n )=x 1 · F(1, x 2, … x n )+ x 1 · F(0, x 2, … x n ) F(x 1, x 2, … x n,+, · )= F(x 1, x 2, … x n, ·,+) x 1 +x 2 + … +x n = x 1 · x 2 · … · x n T13’ x 1 · x 2 · … · x n = x 1 +x 2 + … +x n T13 x · x ·… · x=xT12’ x+x+ … +x=x T12 T15 T14 T15’ F(x 1, x 2, … x n )=[x 1 + F(0, x 2, … x n )] ·[x 1 + F(1, x 2, … x n )] Generalized idempotency DeMorgan ’ s theorems Generalized DeMorgan ’ s theorems Shannon ’ s expansion theorems
4.1 Switching Algebra Equivalent circuits according to DeMorgan’s theorem T13 NextBackReturn x y Z=x · y x y Z=x+y x y x y Z=x · y Examples If F(w,x,y,z)=(w · x)+(x · y)+(w · (x+z )) Then according to T14 F(w,x,y,z)= (w+x) · (x+y) · (w+(x · z))
4.1 Switching Algebra NextBackReturn 5. Duality Principle of Duality: Any theorem or identity in switching algebra remains true if 0 and 1 are swapped and · and + are swapped throughout. Examples x+x · y=x x · (x+y)=x (Covering) x · y+x · z+y · z=x · y+x · z (x+y) · (x+z) · (y+z)= (x+y) · (x+z) (Consensus) x 1 · x 2 · … · x n = x 1 +x 2 + … +x n x 1 +x 2 + … +x n = x 1 · x 2 · … · x n (DeMorgan ’ s theorems)
4.1 Switching Algebra NextBackReturn Consider the following statement x+x · y=x (T9) x · x+y=x (According the principle of duality) x+y=x (According theorem T3 ’ ) How absurd it is! Where did we go wrong? The problem is in operator precedence. Actually x+x · y=x+(x · y) ∴ x · (x+y)=x Operator precedence: ( ), AND, OR
Product-of-sums expression : is a logic product of sum terms. [ e.g. z · (w+x+y) · (x+y+z) ] 4.1 Switching Algebra NextBackReturn Truth table: The brute-force representation simply lists the output of the circuit for every possible input combination. 6. Standard Representations of Logic Functions Sum-of-products expression: is a logic sum of product terms. (e.g. z+w · x · y+x · y · z)
4.1 Switching Algebra NextBackReturn Minterm: An n -variable minterm is a normal product term with n literals. There are 2 n such product terms.. Maxterm: An n -variable maxterm is a normal sum term with n literals. There are 2 n such sum terms. Normal term: is a product or sum term in which no variable appears more than once. e.g. z, w · x · y, x · y · z, w+x+y, x+y+z
4.1 Switching Algebra NextBackReturn x y z x+y+z x·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·zx·y·z maxtermmintermFRow Minterm or maxterm number Canonical SumCanonical Product
4.1 Switching Algebra NextBackReturn Examples Write the canonical sum and product for each of the following logic function: Solution:
A truth table 4.1 Switching Algebra We have now learned five possible representations for a combinational logic function: BackReturn An algebraic sum of minterms, the canonical sum. A minterm list using the ∑ notation. An algebraic product of maxterms, the canonical product. A maxterm list using the ∏ notation.