ETH - Ceramicshttp://ceramics.ethz.ch Identification of reaction rate-determining steps at SOFC electrodes using State-Space Modelling Michel Prestat ETH-Zürich.

Slides:



Advertisements
Similar presentations
Institut für Technische Thermodynamik Dr. W. Schnurnberger Modeling Direct-Methanol-Fuel Cells: taking a look behind experimental current-voltage characteristics.
Advertisements

Modeling of the Current Distribution in Aluminum Anodization Rohan Akolkar and Uziel Landau Department of Chemical Engineering, CWRU, Cleveland OH
Impedance Spectroscopy (Or, how a sinusoidally varying voltage is used to probe multiple electrical properties of materials) Yun-Ju (Alex) Lee June 13,
Design and Optimization of Molten Carbonate Fuel Cell Cathodes Bala S. Haran, Nalini Subramanian, Anand Durairajan, Hector Colonmer, Prabhu Ganesan, Ralph.
Improving the electrolyte/ cathode assembly for advanced Solid Oxide Fuel Cells N. Hildenbrand, B.A. Boukamp, D.H.A. Blank (a) P. Nammensma, G. Rietveld.
Example: Simulation of Electrochemical Impedance Spectroscopy
Materials for Electrochemical Energy Conversion
Modeling in Electrochemical Engineering
CH5715 Energy Conversion and Storage energy-conversion-and-storage-john-irvine/
Electrochemistry in membrane fuel cells 1 Getting started with electrochemistry in polymer electrolyte membrane fuel cells (PEMFC): Francois Lapicque Laboratoire.
Electrode kinetics and mass transport Plan 1.Electrode reaction as a series of multiple consecutive steps 2. Mass transport phenomena: - diffusion - convection.
Evans Diagrams.
Chapter 4 Electrochemical kinetics at electrode / solution interface and electrochemical overpotential.
Swiss Fuel Cell Symposium, Yverdon-les-bains, 19./20. May 2003 Numerical Modeling of PEM Fuel Cells in 2½D M. Roos, P. Held ZHW-University of Applied Sciences.
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS): A TOOL FOR THE CHARACTERIZATION OF SPUTTERED NIOBIUM FILMS M. Musiani Istituto per l’Energetica e le Interfasi,
Segmented cell testing for cathode parameter investigation P. Tanasini, J. A. Schuler, Z. Wuillemin, M. L. Ben Ameur, C. Comninellis, and J. Van herle.
Introduction to Electroanalytical Chemistry
Introduction to electrochemistry - Basics of all techniques -
ELECTROCHEMISTRY INTRO1 !? THINGS THAT WE ARE FAMILIAR WITH : !? Ohm’s law ( and Kirchoff’s…) (ABC... electrical circuits) U = I  R, R =   L / S Faraday’s.
Hydrogen electrolysis Hydrogen electrolysis is the process of running an electrical current through water (H 2 O) and separating the hydrogen from the.
Application: A novel, non-destructive method which provides characterization of the three-phase interface in both catalyst and diffusion layers, between.
Impedance spectroscopy - with emphasis on applications towards grain boundaries and electrodics Harald Fjeld Department of Chemistry, University of Oslo,
Electrochemistry for Engineers
WP 1: Fuel Cell Development 1 Strictly Confidential NMW Workpackage 1: Fuel Cell Development KTI Review Meeting,
M a t e r i a l s Swiss Federal Institute of Technology Zürich Nonmetallic Materials Brandon E. Bürgler Nonmetallic Inorganic Materials ETH Zürich Single.
Investigation of BSCF Cathode on GDC Electrolyte for Intermediate Temperature SOFCs Vann Brasher Mentors: Dr. Daniel Mumm Anh Duong Sungrok Bang.
Nanoscale Electrode Development for Fundamental Studies of Mixed Ionic and Electronic Conductors as High Temperature Fuel Cell Components Jeevitha Evanjeline.
Department of Chemical Engineering University of South Carolina by Hansung Kim and Branko N. Popov Department of Chemical Engineering Center for Electrochemical.
Impedance Spectroscopy Study of an SOFC Unit Cell
2 Structure of electrified interface
Integrated MicroPower GeneratorProgram Review, October 18, 2002 Single-Chamber Fuel Cell Models D. G. Goodwin, Caltech Develop validated physics-based.
( electrochemical impedance spectroscopy, EIS)
Jean-Charles Matéo-Vélez, Frédéric Thivet, Pierre Degond * ONERA - Centre de Toulouse * CNRS - Mathématiques pour l'Industrie et la Physique, Toulouse.
NorFERM 2008 The EMF technique
Summer Course on Exergy and Its Applications EXERGY ANALYSIS of FUEL CELLS C. Ozgur Colpan July 2-4, 2012 Osmaniye Korkut Ata Üniversitesi.
§7.11 Polarization of electrode
Simulating Stimulating Interfaces Applications in Adsorption and Catalysis C. Heath Turner and Xian Wang Department of Chemical and Biological Engineering.
A study of Fe – substituted (La 0.8 Sr 0.2 ) 0.95 MnO 3-y as cathode material for solid oxide fuel cells B. N. Wani, Mrinal Pai, S.J. Patwe, S. Varma,
Introduction to Electrochemical Impedance Spectroscopy (EIS)
SOLID OXIDE FUEL CELL BASED ON PROTON- CONDUCTING CERAMIC ELECTROLYTE* U. (Balu) Balachandran, T. H. Lee, and S. E. Dorris Argonne National Laboratory.
Characterisation of Solid Oxide Fuel Cells and Electrodes Using EIS Mogens Mogensen Materials Research Department, Risø National Laboratory DK-4000 Roskilde,
Basics of Electrochemical Impedance Spectroscopy
Development of EKINOX Model for the Prediction of Microstructural Evolutions in Zr Alloys during Oxydation L. Anagonou, C. Desgranges, C. Toffolon-Masclet,
Electrochemistry for Engineers LECTURE 4 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.
Electrochemistry for Engineers
Theories of Electrochemical Processes on Disordered Electrodes R bulk O’ O’ surf O’ ads R’ e-e- Rough Electrode Mass transferChemical ReactionAdsorptionElectron.
Click to edit Master title style Natalia Garcia Rey and Dana D. Dlott University of Illinois at Urbana-Champaign International Symposium on Molecular Spectroscopy.
IC-1/38 Lecture Kinetics IC-2/38 Lecture What is Kinetics ? Analysis of reaction mechanisms on the molecular scale Derivation.
Modeling of reactant concentration in electrocatalytic processes at conducting polymer modified electrodes Valdas Jasaitis, Albertas Malinauskas, Feliksas.
DICMAPI Seminars 3 rd -4 th December 2014, Naples Electrochemical Impedance Spectroscopy and Electrochemical Noise Analysis Michele Curioni Corrosion and.
Electrochemical Science and Technology: Fundamentals and Applications, Keith B. Oldham, Jan C. Myland and Alan M. Bond. © 2011 John Wiley & Sons, Ltd.
Structure of electrified interface
Bulk Electrolysis: Electrogravimetry and Coulometry
CH5715 Energy Conversion and Storage
CH5715 Energy Conversion and Storage
Electrochemistry: Introduction Electrochemistry at your finger tips
Chap.6 Fuel Cell modeling
Elmira Ghanbari, M. Iannuzzi, M. Rincon Ortiz & R.S.Lillard.
CH5715 Energy Conversion and Storage
Partial Electronic and Ionic Conductivities of
Masoud Aryanpour & Varun Rai
Effectiveness Factors for Electrochemical Reactions in SOFC Electrodes
Electrode kinetics and mass transport
Areum Jeong1 , Jaeyeung Song1 , Jin Hyun Nam2*, Charn-Jung Kim1
A Deeper Insight into the Meaning of k° and α.
The Effectiveness Model for Electrochemical Reaction in SOFCs and Explanation of Its Physical Implication Dongwoo Shin1 , Jin Hyun Nam2,* , Charn-Jung.
Voltametric techniques Chapter 2 Prof. Rezvani.
An Effectiveness Model for Predicting
Cyclic Voltammetry Dr. A. N. Paul Angelo Associate Professor,
Galvanic Cells Assignment # 17.1.
Presentation transcript:

ETH - Ceramicshttp://ceramics.ethz.ch Identification of reaction rate-determining steps at SOFC electrodes using State-Space Modelling Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler

ETH - Ceramicshttp://ceramics.ethz.ch Solid Oxide Fuel Cell (SOFC) cathode O 2- e-e- e-e- H2OH2OH2H2 O2O2 O2O2 anode electrolyte O 2 reduction O2O2 O 2- ½O 2 + 2e -  O 2- mechanism? rate-limiting steps? fuel oxidation O 2- H 2 + O 2-  H 2 O + 2e - mechanism? rate-limiting steps? H2OH2O H2H2 overall: H 2 + ½O 2 → H 2 O

ETH - Ceramicshttp://ceramics.ethz.ch Electrochemical Impedance Spectroscopy and State-Space Modelling Oxygen reduction at electronic conducting SOFC cathodes Oxygen reduction at mixed conducting SOFC cathodes Outline

ETH - Ceramicshttp://ceramics.ethz.ch Impedance spectroscopy I = Z(jω) 1 E ~~ Small amplitude (5-10 mV) input signal → Linearization Potential (V) Current (A) E ~ I ~ steady-state operating point Admittance Transfer Function complex ( j 2 = -1) frequency dependant ( ω = 2π f ) Z = impedance Principle of impedance spectroscopy

ETH - Ceramicshttp://ceramics.ethz.ch EIS spectra and equivalent circuits Re (Z) Im (Z) R Re (Z) / Ω Im (Z) /Ω f (Hz) experimental EIS spectra How to interpret the experimental equivalent circuit ?? Re (Z) Im (Z) R C f = 1 2π RC R Re (Z) Im (Z) R2R2 C2C2 R1R1 Re (Z) Im (Z) R2R2 C2C2 R1R1 R3R3 C3C3 R1R1 R 2 +R 3

ETH - Ceramicshttp://ceramics.ethz.ch State-Space Model electrode potential E ( input) faradaic current I F ( output) O 2(g)  O ads  O 2- electrochemical system KbKb KfKf K des K ads K = model parameters (K ads, K des, K f, K b …)  = state variable (O ads concentration) = f (  , E , K)  state equation I F = g (  , E , K )  output equation dd dt State-Space Model calculating the faradaic impedance:

ETH - Ceramicshttp://ceramics.ethz.ch I E State-Space Modelling θ = A θ +B E I F = C θ +D E. linearization θ = 0. steady-state analysis time domain Z F (jω) Laplace transform frequency domain varying ω Re(Z F ) * * * * * * * * * * * Im(Z F ) θ = K ads (1- θ ) I F = -K f θ e -fE + …. state-space model* Simulink ® : easy implementation of the model. Matlab ® : state-space calculations and computing

ETH - Ceramicshttp://ceramics.ethz.ch Oxygen reduction at electronic conducting SOFC cathodes

ETH - Ceramicshttp://ceramics.ethz.ch Electronic conducting cathodes No O 2 -reduction through the bulk of the electrode. Electrode = electron supplier triple phase boundary (tpb) Electrolyte = O 2- conductor (V o and O o ).. x Typically YSZ (Y 2 O 3 - ZrO 2 ) O ads O2O2 O2O2 electrolyte electrode e-e- x O 2- ( O o ) Typical material: La x Sr 1-x Mn y O 3 (LSM).

ETH - Ceramicshttp://ceramics.ethz.ch Oxygen reduction reaction models Diffusion processes 2 nd Fick‘s law: → Finite difference approach to estimate time and space derivatives → state variable θ (θ 1, θ 2, θ 3 ) = vector θ 1 ≤ θ 2 ≤ θ 3 tpb O ads reservoir θ eq electrolyte diffusion layer θ1θ1 θ2θ2 θ3θ3 O 2- ( O o ) x O ads O2O2 O2O2 O2O2 O2O2

ETH - Ceramicshttp://ceramics.ethz.ch Model implementation in Simulink ® Block diagrams: as many as compartments in the diffusion layer. E input IFIF output θ1θ1 θ1θ1 θ3θ3 θ2θ2 θ2θ2 θ2θ2 θ3θ3 tpb (1) (2) (3) in-portout-port

ETH - Ceramicshttp://ceramics.ethz.ch Model Implementation in Simulink ® u2u2 K des state variable u2u K ads p O2 Block diagram n°2 θ2θ2 out-port to block diagrams (1) and (3) K dif / /3 2/3 θ1θ1 θ3θ3 in-ports θ2θ2

ETH - Ceramicshttp://ceramics.ethz.ch Modelling results O ads O2O2 O2O2 O 2- electrode electrolyte rds = adsorption, diffusion and charge transfer Re(Z F ) /  Im(Z F ) /  O ads O2O2 O2O2 O 2- electrode electrolyte rds = diffusion and charge transfer Re(Z F ) /  Im(Z F ) /  45° O ads O2O2 O2O2 O 2- electrode electrolyte rds = adsorption and charge transfer Re(Z F ) /  Im(Z F ) /  R2R2 C2C2 R1R1 O ads O2O2 O2O2 O 2- electrode electrolyte rds = charge transfer rds = rate-determining step(s) Re(Z F ) /  Im(Z F ) /  R1R1

ETH - Ceramicshttp://ceramics.ethz.ch Modelling results O ads O2O2 O2O2 O 2- electrode electrolyte rds = adsorption and charge transfer Re(Z F ) /  Im(Z F ) /  R2R2 C2C2 R1R1 → Necessity of a modelling approach to comprehensively interpret experimental impedance even for relatively simple reaction models charge transfer rate constants (potential dependant) adsorption/desorption rate constants R 1 and R 2 are not independant

ETH - Ceramicshttp://ceramics.ethz.ch ZFZF Re (Z TOT ) / Ω Im (Z TOT ) / Ω Experimental E+E ~ I + II + I ~ potentiostat (DC) working electrode frequency response analyzer (AC) counter electrode reference electrode Z TOT = R2R2 CFCF R1R1 RΩRΩ C DL C DL highC DL moderate C DL =0 (Z F )

ETH - Ceramicshttp://ceramics.ethz.ch Experimental porous microstructured dense „real“ electrodes Geometrically well-defined electrodes top view ~10-30  m ~100 nm -1  m ~20  m -100  m

ETH - Ceramicshttp://ceramics.ethz.ch Comparison modelling - experiments One unique vector (K ads, K des K dif, k f ) has to describe at least 4 different impedance spectra Z exp → practical identification - (R Ω, C DL ) La 0.85 Sr 0.15 MnO 800°C I =170 mA.cm -2 in air. Example of the LSM/YSZ interface rds = adsorption, diffusion and charge transfer O ads O2O2 O2O2 O 2- electrode electrolyte

ETH - Ceramicshttp://ceramics.ethz.ch Oxygen reduction at mixed ionic-electronic conducting SOFC cathodes

ETH - Ceramicshttp://ceramics.ethz.ch Mixed ionic-electronic electrodes (MIEC) electrolyte O 2- O ads O2O2 electrode O 2- Competition between two reaction pathways for O 2 reduction: surface and bulk. → the fastest pathway is rate-determining Typical material: La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF). Potential (V) Current (A) EeqEeq LSCF LSM ideal electrode Why is LSCF a better electrocatalyst than LSM for oxygen reduction? Intermediate T° ( °C) → the rate-detemining pathway influences the microstructure of the electrode

ETH - Ceramicshttp://ceramics.ethz.ch Mixed ionic-electronic electrodes bulk pathway is rate-limiting: → thin dense electrodes, large electrolyte coverage, low tpb. surface pathway is rate-limiting: → porous electrodes, large tpb bulk and surface pathways are rate-limiting: → Optimization of microstructure (a, b) top view a b

ETH - Ceramicshttp://ceramics.ethz.ch gwd electrodes LSCF electrode CGO electrolyte tpb S S and l tpb constant S=0.25 cm 2, l tpb = 2cm d is varied d ~ 100 nm - 1 µm → Z sim (E, p O2, d) Model system: geometrically well-defined (gwd) electrodes d electrolyte O 2- O2O2 d

ETH - Ceramicshttp://ceramics.ethz.ch Experimental 300 nm LSCF CGO gwd LSCF layers are prepared by pulsed laser deposition: dense, crack-free. → Z exp (E, p O2, d) = Z sim (E, p O2, d) ? LSCF electrode CGO electrolyte tpb S

ETH - Ceramicshttp://ceramics.ethz.ch Summary  electrochemical reactions yield complex impedance behavior  necessity of a modelling approach (analytical or numerical)  use of geometrically well-defined electrodes  State-Space Modelling (with modern computation tools) enables to simulate the electrochemical behavior of multistep reactions  faradaic impedance  I-U curves  electroactive species concentration profiles

ETH - Ceramicshttp://ceramics.ethz.ch Outlook  SOFC electrode reactions with mixed conductors  Single gas chamber SOFC  State-Space Modelling of entire cells: - with ionic conducting electrolyte (YSZ) - with mixed ionic-electronic conducting electrolyte (GdO-CeO 2 )  SSM approach can be applied to any other field of electrochemistry  PEM-FC, batteries, corrosion, electrodeposition…

ETH - Ceramicshttp://ceramics.ethz.ch Many thanks to... ETH-Zürich S. Rey-Mermet, Dr. Paul Muralt (EPF-Lausanne, Lab. de Céramique) Dr. J.-F. Koenig (Université de Strasbourg, Lab. d‘éléctrochimie) S. Schlumpf SOFC group of ETH-Zürich

ETH - Ceramicshttp://ceramics.ethz.ch END

ETH - Ceramicshttp://ceramics.ethz.ch Tentative model for oxygen reduction at LSCF O2O2 Electrolyte (CGO) O 2- O ads O2O2 Dense electrode (LSCF) Slow surface diffusion (negligible) O 2- K in K out K des K ads D KfKf KbKb K des K ads K fs K bs triple phase boundary (tpb) gas/electrode/electrolyte Dense electrode: - mixed conducting: e- (h) and O 2- - low potential gradient - well-defined dimension Electrolyte - pure O 2- conductor gas phase: - air - no gas phase diffusion - pO2 constant T = 700°C Competition between surface and bulk pathways

ETH - Ceramicshttp://ceramics.ethz.ch Mixed ionic-electronic electrodes Modelling MIEC is still very controversial - incorpotation of oxygen in the the - extension of space charge region - influence of permittivity - influence of permittivity: presence of a displacement current? - is electroneutrality fulfilled? electrolyte O 2- O ads O2O2 electrode O 2- O ads O2O2 Modelling MIEC is still very controversial

ETH - Ceramicshttp://ceramics.ethz.ch Model Implementation in Simulink ® K ads p O2 (1-  ads )  2 – K des  ads 2 – K f (E)  ads + K b (E) (1-  ads ) I F = K i [– K f (E)  ads + K b (E) (1-  ads )] dθ ads dt = u2u2 K des x -+-+ KiKi IFIF output E input k f exp(-2   f E) k b exp (2 (1-   f E) function K f (E) function K b (E) x state variable θ ads 1-θ ads θ ads K ads p O2 u2u2

ETH - Ceramicshttp://ceramics.ethz.ch Model Implementation in Simulink ® K ads p O2 (1-  ads )  2 – K des  ads 2 – K f (E)  ads + K b (E) (1-  ads ) I F = K i [– K f (E)  ads + K b (E) (1-  ads )] dθ ads dt = K ads p O2 u2u2 K des xx-+-+ integrator E input KiKi IFIF output k f exp(-2   f E) k b exp (2 (1-   f E) function K f (E) function K b (E) 1-θ ads θ ads u2u2

ETH - Ceramicshttp://ceramics.ethz.ch Alternative approch: modeling the impedance Re (Z) Im (Z) Re (Z) Im (Z) experimental impedance reaction model O 2  O ads  O 2- state-space modeling faradaic impedance new model O 2  O 2, ads  O 2- validation of the model assessment of kinetics

ETH - Ceramicshttp://ceramics.ethz.ch O 2(g) + 2s  2O ads K ads K des Model 1 (without surf. diffusion) Dissociative adsorption: Charge transfer: O 2- ( O o ) x O ads O2O2 electrolyte electrode θ ads → state variable θ ads = scalar → consecutive reaction steps O ads + 2e -  O 2- K f (E) K b (E) K ads p O2 (1-  ads )  2 – K des  ads 2 – K f (E)  ads + K b (E) (1-  ads ) I F = K i [– K f (E)  ads + K b (E) (1-  ads )] dθ ads dt = → state-space model

ETH - Ceramicshttp://ceramics.ethz.ch O 2(g) + 2s  2O ads K ads K des O ads + 2e -  O 2- K f (E) K b (E) O ads  O ads K dif Numerical approach Diffusion processes 2 nd Fick‘s law: → Finite difference approach to estimate time and space derivatives tpb O ads reservoir θ eq electrolyte diffusion layer θ1θ1 θ2θ2 θ3θ3 O 2- ( O o ) x O ads O2O2 O2O2 O2O2 O2O2 → state variable θ (θ 1, θ 2, θ 3 ) = vector θ 1 ≤ θ 2 ≤ θ 3

ETH - Ceramicshttp://ceramics.ethz.ch Model implementation in Simulink ® u2u K ads p O2 u2u2 K des 1 s Integrator (θ 2 ) Block diagram n°2 θ2θ2 out-port to block diagrams (1) and (3) K dif / /3 2/3 θ1θ1 θ3θ3 in-ports

ETH - Ceramicshttp://ceramics.ethz.ch Modelling results O ads O2O2 O2O2 O 2- electrode electrolyte rds = adsorption and charge transfer Re(Z F ) /  Im(Z F ) /  R2R2 C2C2 R1R1 amount of adsorbed oxygen → Necessity of a modelling approach to comprehensively interpret experimental impedance charge transfer rate constants (potential dependant) adsorption/desorption rate constants R 1 and R 2 are not independant

ETH - Ceramicshttp://ceramics.ethz.ch Experimental investigation electrolyte O 2- O2O2 electrode O 2- Consequence of parallel pathways Intermediate T° SOFC ( °C). Typical material: La x Sr 1-x Co y Fe 1-y O 3 (LSCF).