Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.

Slides:



Advertisements
Similar presentations
Workshop Issues Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Diagnostics.
Advertisements

1 Optimal focusing lattice for XFEL undulators: Numerical simulations Vitali Khachatryan, Artur Tarloyan CANDLE, DESY/MPY
05/03/2004 Measurement of Bunch Length Using Spectral Analysis of Incoherent Fluctuations Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
June 19, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Overview 1 Overview Heinz-Dieter Nuhn, SLAC / LCLS June 19, 2008 Introduction Workshop.
Workshop Introduction Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Diagnostics.
P. Emma LCLS FAC 12 Oct Comments from LCLS FAC Meeting (April 2004): J. Roßbach:“How do you detect weak FEL power when the.
October 12, 2006 Heinz-Dieter Nuhn, SLAC / LCLS Undulator Good Field Region and Tuning Strategy 1 Undulator Good Field Region and.
Undulator Physics April 29, 2004 Heinz-Dieter Nuhn, SLAC / SSRL Facility Advisory Committee Meeting Undulator Physics Diagnostics.
LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 1 Linac Coherent Light Source.
Performance Analysis Using Genesis 1.3 Sven Reiche LCLS Undulator Parameter Workshop Argonne National Laboratory 10/24/03.
October 30, 2007 Heinz-Dieter Nuhn, SLAC / LCLS Undulator Commissioning Plans 1 Undulator Commissioning Plans Heinz-Dieter Nuhn,
1 Daniel Ratner 1 Gain Length and Taper August, 2009 FEL Gain length and Taper Measurements at LCLS D. Ratner A. Brachmann, F.J.
LTU & Electron Beam Dump Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Technical Design.
LCLS Undulators October 14, 2004 Heinz-Dieter Nuhn, SLAC / SSRL MMF Review Introduction to the LCLS Undulators Heinz-Dieter Nuhn,
BLM review Mario Santana Leitner OUTLOOK ON FLUKA SIMULATIONS FOR UDULATOR DAMAGE AND BLM RESPONSE Mario Santana Leitner, Alberto.
Undulator Commissioning September 22, 2004 Heinz-Dieter Nuhn, SLAC / SSRL LCLS Commissioning Workshop Undulator / FEL Commissioning.
Undulator Overview FEL Performance Assessment
PRDs, ESDs, ICDs Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
LCLS Linac Long Lead Procurement Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
Undulator Physics Update October 12, 2004 Heinz-Dieter Nuhn, SLAC / LCLS Facility Advisory Committee Meeting Undulator Physics Update.
LCLS Undulator Magnet Irradiation Sensitivity Workshop Thursday June 19, 2008 Jeff Dooling 1 SLAC Redwood Room A/B, SLAC Thursday, June.
Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Undulator Alignment.
BBA Related Issues Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
Opening Comments and Charge 19 January 2004 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear.
Overview of Proposed Parameter Changes Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
April 16, 2007 Heinz-Dieter Nuhn, SLAC / LCLS Undulator Physics Issues 1 Undulator Physics Issues Heinz-Dieter Nuhn, SLAC / LCLS.
Wrap-up 20 January 2004 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
RF Systems and Stability Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
Undulator Specifications Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
LCLS Undulator Systems TDR Charge Linac Coherent Light Source Stanford Linear Accelerator Center Technical Review, March 3, 2004.
EM vs. PM Quads Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
Undulator Working Group Summary Heinz-Dieter Nuhn – Alexander Temnykh Presented at Friday, March 9, 2012.
The impact of undulators in an ERL Jim Clarke ASTeC, STFC Daresbury Laboratory FLS 2012, March 2012.
Low Emittance RF Gun Developments for PAL-XFEL
A. Doyuran, L. DiMauro, W. Graves, R. Heese, E. D. Johnson, S. Krinsky, H. Loos, J.B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, Y. Shen, J.
Linac Coherent Light Source Coherent Synchrotron Radiation Workshop
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
The Future of Photon Science and Free-Electron Lasers Ingolf Lindau Lund University and Stanford University MAX-Lab and Synchrotron Light Research KTH,
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
X-Ray FEL Simulation: Beam Modeling William M. Fawley Center For Beam Physics Lawrence Berkeley National Laboratory ICFA 2003 Workshop.
Realizing an Ion Channel Laser at FACET-II Mike Litos Oct. 15, 2015 SLAC National Accelerator Laboratory FACET-II Science Opportunities Workshop.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
TAC SASE FEL Project Dr. Ömer Yavaş * Ankara University * On behalf of TAC SASE FEL Study Group Meeting on the Feasibility of X-Band Linac Based FEL Facility.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
What did we learn from TTF1 FEL? P. Castro (DESY).
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Paul Scherrer Institut
Free Electron Lasers (FEL’s)
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Phase Adjustments: K vs
Laser assisted emittance exchange to reduce the X-ray FEL size
Status of FEL Physics Research Worldwide  Claudio Pellegrini, UCLA April 23, 2002 Review of Basic FEL physical properties and definition of important.
Gain Computation Sven Reiche, UCLA April 24, 2002
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Undulator Physics Diagnostics / Commissioning Strategy Heinz-Dieter Nuhn, SLAC / SSRL August 11, 2004 Undulator Overview FEL Parameters Diagnostics and.
Introduction to Free Electron Lasers Zhirong Huang
Enhanced Self-Amplified Spontaneous Emission
Vitali Khachatryan, Arthur Tarloyan, Vahe Sahakyan, V. Tsakanov
MEIC Alternative Design Part V
Presentation transcript:

Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator Meeting, June , 2004 Heinz-Dieter Nuhn, SLAC / LCLS Undulator Gap Increase Heinz-Dieter Nuhn, SLAC / LCLS June 28, 2004 Problem Description Impact on Performance Summary Problem Description Impact on Performance Summary

Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator Meeting, June , 2004 Heinz-Dieter Nuhn, SLAC / LCLS Problem Description Present baseline design includes gap height of 6.5 mm Resulting in 250 microns or less of clearance on top and bottom of the vacuum chamber In order to support the remote roll-away option the APS requests a 200 microns increase in clearance on the top and bottom of the vacuum which corresponds to a gap increase from 6.5 to 6.9 mm If the effect of this gap increase is not compensated by change in magnet design or magnet material it will correspond to a reduction in nominal K value from to Expected performance impact of this reduction in K value is being discussed on the following pages. Present baseline design includes gap height of 6.5 mm Resulting in 250 microns or less of clearance on top and bottom of the vacuum chamber In order to support the remote roll-away option the APS requests a 200 microns increase in clearance on the top and bottom of the vacuum which corresponds to a gap increase from 6.5 to 6.9 mm If the effect of this gap increase is not compensated by change in magnet design or magnet material it will correspond to a reduction in nominal K value from to Expected performance impact of this reduction in K value is being discussed on the following pages.

Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator Meeting, June , 2004 Heinz-Dieter Nuhn, SLAC / LCLS Impact of Gap Change I VARIABLE(Bold=input)UNITSLCLS NOV03LCLS JUN04ChangeLCLS NOV03LCLS JUN04Change Wiggler Typelinear r (Radiation wavelength) nm0.15 0%1.50 0% w (Wiggler period) (used) cm3.00 0%3.00 0% k w (Wiggler wave number)cm % % g w (Wiggler gap)cm % % B w (Wiggler peak field)(used)Tesla % % K (Wiggler parameter, peak) % % awaw % %  x,y,ext. (quad) m % %  n_rms (Normalized rms emittance) mm mrad % %  n,rms /  mm mrad43.56E E-65%286.99E E-65%  x (electron distribution rms  ) mm % %  ' x (electron divergence)  m rad % %  (Electron energy in unit of.511MeV) % % E (Electron Energy)GeV % % I peak (Peak electron beam current)A % % Peak Beam powerGW % % Particle densitiy n e m E E+22-5%3.34E E+21-5%   (rms energy spread) % %    x % % 1.5 Angstrom 15.0 Angstrom

Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator Meeting, June , 2004 Heinz-Dieter Nuhn, SLAC / LCLS Impact of Gap Change II VARIABLE(Bold=input)UNITSLCLS NOV03LCLS JUN04ChangeLCLS NOV03LCLS JUN04Change  j (Radiation Beam Radius) (3D) mm % % Z r (Rayleigh Length) (3D)m % % L G (3D) [as in exp [z /LG(3D)]m % %  (3D) =  w /(4  L G sqrt(3)) E E-6-2%557.64E E-6-3% L E (3D)m % % 2  L c (3D) = 2  L E r / w mm % % 2  L c (3D) fs % % P sat (saturated power, 3D) correctedMW % % L sat (SASE length to saturation, 3D) corm % % Average PowerW244.6E E-3-8%226.7E E-3-10% Peak Photon FluxPh/s6.054E E+24-8%3.011E E+25-10% Average Photon FluxPh/pulse1.539E E+12-8%1.427E E+13-10% Average Photon FluxPh/s1.847E E+14-8%1.712E E+15-10%  ph,x (coherent photon distribution, rms) micron % %  ph,x' (coherent photon distribution, rms) micro-rad % % Repetition RateHz % % Spontaneous Energy per PulseJ21.4E-317.2E-3-20%2.3E-31.8E-3-20% Peak Spontaneous Power per PulseW84.4E+967.6E+9-20%4.8E+93.8E+9-20% Coherent Photons per Pulse1.539E E+12-8%1.427E E+13-10% Coherent Energy per PulsemJ % % Photon EnergykeV8.3E+0 0%826.6E-3 0% Peak Brilliance [Ph./s/mm 2 /mr 2 /.1%]1.639E E+33-8%2.942E E+31-10% Ave. Brilliance [Ph./s/mm 2 /mr 2 /.1%]5.001E E+22-8%1.672E E+21-10% 1.5 Angstrom 15.0 Angstrom

Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator Meeting, June , 2004 Heinz-Dieter Nuhn, SLAC / LCLS ConclusionsConclusions A reduction in nominal K value from to will reduce the FEL output power (8 %) and increase gain length (1 %). Although the reduction of the number of output photons is small, an attempt should be made to minimize it by reviewing the optimization of the undulator design. A reduction in nominal K value from to will reduce the FEL output power (8 %) and increase gain length (1 %). Although the reduction of the number of output photons is small, an attempt should be made to minimize it by reviewing the optimization of the undulator design.

Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator Meeting, June , 2004 Heinz-Dieter Nuhn, SLAC / LCLS End of Presentation