Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein.

Slides:



Advertisements
Similar presentations
Plasma Window Options and Opportunities for Inertial Fusion Applications Leslie Bromberg Ady Herskovitch* MIT Plasma Science and Fusion Center ARIES meeting.
Advertisements

Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Lecture 15: Capillary motion
Progress Report on SPARTAN Chamber Dynamics Simulation Code Farrokh Najmabadi and Zoran Dragojlovic HAPL Meeting February 5-6, 2004 Georgia Institute of.
September 24-25, 2003 HAPL meeting, UW, Madison 1 Armor Configuration & Thermal Analysis 1.Parametric analysis in support of system studies 2.Preliminary.
DAH, UW-FTI ARIES-IFE, April 2002, 1 Results from parametric studies of thin liquid wall IFE chambers D. A. Haynes, Jr. Fusion Technology Institute University.
Assessment of Chamber Concepts for IFE Power Plants: The ARIES-IFE study Farrokh Najmabadi for the ARIES Team IFSA2001 September 9-14, 2001 Kyoto, Japan.
April 6-7, 2002 A. R. Raffray, et al., Modeling of Inertial Fusion Chamber 1 Modeling of Inertial Fusion Chamber A. R. Raffray, F. Najmabadi, Z. Dragojlovic,
March 3-4, 2005 HAPL meeting, NRL 1 Target Survival During Injection…The Advantages of Getting Rid of the Buffer Gas Presented by A.R. Raffray Other Contributors:
IFSA, Kyoto, Japan, September Dry Chamber Wall Thermo-Mechanical Behavior and Lifetime under IFE Cyclic Energy Deposition A. R. Raffray 1, D. Haynes.
May 31-June 1, 2001 A. R. Raffray, et al., Assessment of Dry Chamber Walls as Preliminary Step in Defining Key Processes for Chamber Clearing Code 1 Assessment.
DAH, RRP, UW - FTI ARIES-IFE, January 2002, 1 Thin liquid Pb wall protection for IFE chambers D. A. Haynes, Jr. and R. R. Peterson Fusion Technology Institute.
December 5-6, 2002 HAPL Program Workshop, NRL, Washington, D.C. 1 Enhancing Target Survival Presented by A.R. Raffray Other Contributors: M. S. Tillack,
The Heavy Ion Fusion Virtual National Laboratory UC Berkeley Christophe S. Debonnel 1,2 (1) Thermal Hydraulics Laboratory Department of Nuclear Engineering.
March 8, 2001 A. R. Raffray, et al., Assessment of Carbon and Tungsten Dry Chamber Walls under IFE Energy Depositions Assessment of Carbon and Tungsten.
The Heavy Ion Fusion Virtual National Laboratory UC Berkeley C.S. Debonnel 1,2, S.S. Yu 2, P.F. Peterson 1 (1) Thermal Hydraulics Laboratory Department.
A. R. Raffray, B. R. Christensen and M. S. Tillack Can a Direct-Drive Target Survive Injection into an IFE Chamber? Japan-US Workshop on IFE Target Fabrication,
February 3-4, nd US/Japan Target Workshop, GA, San Diego, CA 1 Heating and Thermal Response of Direct- Drive Target During Injection Presented by.
Chamber Dynamic Response, Laser Driver-Chamber Interface and System Integration for Inertial Fusion Energy Mark Tillack Farrokh Najmabadi Rene Raffray.
EFFECTS OF CHAMBER GEOMETRY AND GAS PROPERTIES ON HYDRODYNAMIC EVOLUTION OF IFE CHAMBERS Zoran Dragojlovic and Farrokh Najmabadi University of California.
April 4-5, 2002 A. R. Raffray, et al., Chamber Clearing Code Development 1 Chamber Dynamics and Clearing Code Development Effort A. R. Raffray, F. Najmabadi,
Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark Tillack (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop February 6-7, 2001.
HYDRODYNAMIC EVOLUTION OF IFE CHAMBERS WITH DIFFERENT PROTECTIVE GASES AND PRE-IGNITION CONDITIONS Zoran Dragojlovic and Farrokh Najmabadi University of.
Design Windows for IFE Chambers and Target Injection Farrokh Najmabadi for the ARIES Team US/Japan Workshop on Target Fabrication December 3-4, 2001 General.
Prediction of Fluid Dynamics in The Inertial Confinement Fusion Chamber by Godunov Solver With Adaptive Grid Refinement Zoran Dragojlovic, Farrokh Najmabadi,
April 10, 2002 A. R. Raffray, et al., Dynamic Chamber Armor Behavior in IFE and MFE 1 Dynamic Chamber Armor Behavior in IFE and MFE A. R. Raffray 1, G.
June7-8, 2001 A. R. Raffray, et al., Completion of Assessment of Dry Chamber Wall Option Without Protective Gas, and Initial Planning Activity for Assessment.
Chamber Dynamic Response Modeling Zoran Dragojlovic.
Action Items For ARIES-IFE Study Farrokh Najmabadi ARIES Project Meeting June 19-21, 2000 University of Wisconsin, Madison Electronic copy:
October 24, Remaining Action Items on Dry Chamber Wall 2. “Overlap” Design Regions 3. Scoping Analysis of Sacrificial Wall A. R. Raffray, J.
1 THERMAL LOADING OF A DIRECT DRIVE TARGET IN RAREFIED GAS B. R. Christensen, A. R. Raffray, and M. S. Tillack Mechanical and Aerospace Engineering Department.
Laser IFE Program Workshop –5/31/01 1 Output Spectra from Direct Drive ICF Targets Laser IFE Workshop May 31-June 1, 2001 Naval Research Laboratory Robert.
January 8-10, 2003/ARR 1 1. Pre-Shot Aerosol Parameteric Design Window for Thin Liquid Wall 2. Scoping Liquid Wall Mechanical Response to Thermal Shocks.
Aug. 8-9, 2006 HAPL meeting, GA 1 Advanced Chamber Concept with Magnetic Intervention: - Ion Dump Issues - Status of Blanket Study A. René Raffray UCSD.
Nov 13-14, 2001 A. R. Raffray, et al., Progress Report on Chamber Clearing Code Effort 1 Progress Report on Chamber Clearing Code Development Effort A.
Highlights of ARIES-IFE Study Farrokh Najmabadi VLT Conference Call April 18, 2001 Electronic copy: ARIES Web Site:
Idaho National Engineering and Environmental Laboratory Update on IFE Aerosol Analysis J.P. Sharpe INEEL Fusion Safety Program.
1 MODELING DT VAPORIZATION AND MELTING IN A DIRECT DRIVE TARGET B. R. Christensen, A. R. Raffray, and M. S. Tillack Mechanical and Aerospace Engineering.
RRP:10/17/01Aries IFE 1 Liquid Wall Chamber Dynamics Aries Electronic Workshop October 17, 2001 Robert R. Peterson Fusion Technology Institute University.
VORPAL for Simulating RF Breakdown Kevin Paul VORPAL is a massively-parallel, fully electromagnetic particle- in-cell (PIC) code, originally.
April 9-10, 2003 HAPL Program Meeting, SNL, Albuquerque, N.M. 1 Lowering Target Initial Temperature to Enhance Target Survival Presented by A.R. Raffray.
What are the three common states of matter? Solid, plasma, liquid Liquid, Gas, Plasma Solid, Liquid, Gas None of the above.
HAPL WORKSHOP Chamber Gas Density Requirements for Ion Stopping Presented by D. A. Haynes, Jr. for the staff of the Fusion Technology Institute.
The Heavy Ion Fusion Virtual National Laboratory UC Berkeley Christophe S. Debonnel Thermal Hydraulics Laboratory Department of Nuclear Engineering University.
ARR/April 8, Magnetic Intervention Dump Concepts A. René Raffray UCSD With contributions from: A. E. Robson, D. Rose and J. Sethian HAPL Meeting.
Progress Report on SPARTAN Simulation of IFE Chamber Dynamics Farrokh Najmabadi and Zoran Dragojlovic HAPL Meeting March 3-4, 2005 Naval Research Laboratory.
July 11, 2003 HAPL e-meeting. 1 Armor Design & Modeling Progress A. René Raffray UCSD HAPL e-meeting July 11, 2003 (1)Provide Parameters for Chamber “System”
1 Neutronics Assessment of Self-Cooled Li Blanket Concept Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
Edge-SOL Plasma Transport Simulation for the KSTAR
SPARTAN Chamber Dynamics Code Zoran Dragojlovic and Farrokh Najmabadi University of California in San Diego HAPL Meeting, June 20-21, 2005, Lawrence Livermore.
-Plasma can be produced when a laser ionizes gas molecules in a medium -Normally, ordinary gases are transparent to electromagnetic radiation. Why then.
Temperature Response and Ion Deposition in the 1 mm Tungsten Armor Layer for the 10.5 m HAPL Target Chamber T.A. Heltemes, D.R. Boris and M. Fatenejad,
Target threat spectra Gregory Moses and John Santarius with Thad Heltemes, Milad Fatenejad, Matt Terry and Jiankui Yuan Fusion Technology Institute University.
Target threat spectra Gregory Moses and John Santarius Fusion Technology Institute University of Wisconsin-Madison HAPL Review Meeting March 3-4, 2005.
Fusion Technology Institute 4/5/2002HAPL1 Ion Driven Fireballs: Calculations and Experiments R.R. Peterson, G.A. Moses, and J.F. Santarius University of.
Ion Mitigation for Laser IFE Optics Ryan Abbott, Jeff Latkowski, Rob Schmitt HAPL Program Workshop Atlanta, Georgia, February 5, 2004 This work was performed.
Design for a 2 MW graphite target for a neutrino beam Jim Hylen Accelerator Physics and Technology Workshop for Project X November 12-13, 2007.
Progress Report on SPARTAN Chamber Dynamics Simulation Code Farrokh Najmabadi, Zoran Dragojlovic HAPL Meeting April 8-10, 2003 Sandia National Laboratory,
Modeling of Z-Ablation I. E. Golovkin, R. R. Peterson, D. A. Haynes University of Wisconsin-Madison G. Rochau Sandia National Laboratories Presented at.
Chamber Dynamic Response Modeling
University of Michigan, Ann Arbor, MI, 48109, USA
States of Matter Matter commonly occurs in one of three “states”
BUCKY Simulations of Z and RHEPP Experiments
Can a Direct-Drive Target Survive Injection into an IFE Chamber?
University of California, San Diego
IFE Wetted-Wall Chamber Engineering “Preliminary Considerations”
M. S. Tillack and F. Najmabadi
University of California, San Diego
Aerosol Production in Lead-protected and Flibe-protected Chambers
TRL tables: power conversion and lifetime
Presentation transcript:

Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1, 2001 Naval Research Laboratory Electronic copy: UCSD IFE Web Site:

 Statement of Work: Initiate development of a fully integrated computer code to model and study chamber dynamic and clearing. Deliver the core of the code including the input/output interfaces, the geometry definition and the numerical solution control for multi-species (multi-fluid), 2-D transient compressible Navier Stokes equations. Provide chamber wall-interaction modules, which include physics of melting; evaporation and sublimation; sputtering; macroscopic erosion; and condensation and redeposition. Scope the range of chamber dynamics and clearing experiments that can be carried out in a facility producing ,000 J of X-ray.  Work Started on March 20, ANL subcontract in place and work by ANL has begun. Statement of Work and Progress to Date

Breakdown of Chamber Clearing Research Stage-1 code Stage-2 code Experiments Application: Experiment planning Design study support Stage 2 Code development Core development Wall-interaction modules Validation & Module Integration Doc. Documentation & release of the code Validation & Module Integration Adaptive Mesh routinesDoc. App. Experiment planning Experiment Design Experiment Implementation 1 st year2 nd year Radiation transport

Chamber Dynamics Research— Summary Progress Report  We are working on characterization of key physical processes. Comprehensive overall representation of physical processes in spatial and temporal forms; Summary description for each process: its key parameters and assessment of its relative importance (for modeling priorities and experiment planning) and relevant data base; Initial effort on code architecture development. Two excellent suggestions by NRL scientists are added to our code development plans: Bringing along a 1-D version of the code for fast prototyping of various algorithms. Consider using a Monte Carlo Code (e.g., DSMC) to calculate transport coefficients when we are interested in fine scale structures in the chamber (e.g., information needed to assess target injection in the chamber). Estimate of chamber pumping conditions and requirements.

Cavity Gas, Target, and Wall Species Chamber Dynamics Chamber Wall Interaction Time of flight to wall: X-rays ~20 ns Neutrons ~100 ns Alphas ~400 ns Fast Ions~1  s Slow Ions ~1-10  s Photon transport & energy deposition Ion transport & energy deposition Heating & ionization Radiation Gas dynamics (shock, convective flow, large gradients, viscous dissipation) Condensation Conduction Cavity clearing Timescale: ns to 100 ms Convection & cooling Timescale: ms Photon energy deposition Ion energy deposition Neutron &  energy deposition Conduction Melting Vaporization Sputtering Thermo-mechanics/ macroscopic erosion Radiation damage Blistering (from bubbles of implanted gas) Desorption or other degassing process Timescale: ns to 100 ms Coolant Chamber Physics Modeling

Solid Wall mass loss Establishing Fluid-wall Chamber Region (multiphase, multispecies) Target Implosion Wall Region Momentum Equations Energy Equations Conduction Energy Eq. Radiation transport Condensation Pressure (T) Viscous dissipation Evaporation, Sputtering, etc. Condensation Evacuation Phase change Condensation Stress/strain analysis Thermal Stress Fluid-wall momentum Eq. Kinetic energy Conduction &Convection Ion & photon transport Thermal capacity momentum transfer (impulse) Density Ion transport Mass Equations Velocity Gas Feed Condensation

Chamber Wall Evaporation

Condensation

Physical Sputtering

Example: Physical Sputtering of C Sputtering yield peaks at ~1 keV and decreases with increasing ion energy level. Could be important for debris ions but not for fast ions. Sputtering yield peaks at an angle of incidence of ~80°. From J. Roth, et al., “Erosion of Graphite due to Particle Impact,” Nuclear Fusion, 1991.

Chemical Sputtering (Carbon)

Radiation Enhanced Sublimation

Example: Radiation Enhanced Sublimation of C From J. Roth, et al., “Erosion of Graphite due to Particle Impact,” Nuclear Fusion, Dependence of RES on Incident Ion Energy and Material Temperature

Brittle Destruction of Carbon-Based-Materials

Splashing Erosion of Melting Materials

Interaction of Photons with Matter

Interaction of Ions with Matter

Chamber Dynamics Research— Summary Progress Report  We are working on characterization of key physical processes. Comprehensive overall representation of physical processes in spatial and temporal forms; Summary description for each process: its key parameters and assessment of its relative importance (for modeling priorities and experiment planning) and relevant data base; Initial effort on code architecture development. Two excellent suggestions by NRL scientists are added to our code development plans: Bringing along a 1-D version of the code for fast prototyping of various algorithms. Consider using a Monte Carlo Code (e.g., DSMC) to calculate transport coefficients when we are interested in fine scale structures in the chamber (e.g., information needed to assess target injection in the chamber). Estimate of chamber pumping conditions and requirements.

Chamber Pumping Options  Basic Assumptions: Chamber is 5m radius (524 m 3 ) and is at constant temperature of 1000 K. Chamber is pumped through laser beam ports with pump located 1-m from the chamber wall (100 outlet, 50 cm diameter). Molecular flow (Kn > 0.01 for pressures below 25 mTorr). Pumping speed limited by duct conductance (C = 1 x 10 6 liter/sec for Xe). Ignore out-gassing of chamber wall. Ignore gas in the beam ducts (only chamber is pumped).  Can we evacuate the chamber between shots (i.e., pump out Xe and debris to 100 times below equilibrium pressure)? No. Even assuming zero leak rate and ignoring gas in beam ports, it takes 2.4 s to pump from P to 0.01P (for any starting pressure of Xe.)

 Inject Xe with the targets (10 times the number density of Xe as the number density of target material).  Throughput of the vacuum system depends on pressure (conductance is constant with constant temperature).  Shot frequency dictates throughput of injected materials. Chamber Pumping Option: Continuing Recycling of Chamber Gas Assumed No leaks. Max shot rate: (targets + Xe) throughput = vacuum system throughput

 It will be very difficult to maintain chamber pressure below ~ 20 mTorr!  At ~50 mTorr and above, shot rate is NOT limited by pumping. Continuing Recycling of Chamber Gas: Effect of Leaks