第4章 有限體.

Slides:



Advertisements
Similar presentations
: Arrange the Numbers ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 11481: Arrange the Numbers 解題者:李重儀 解題日期: 2008 年 9 月 13 日 題意: 將數列 {1,2,3, …,N}
Advertisements

布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
密碼學與網路安全 第4章 有限體.
1 集合論 Chapter 3. 2 Chapter 3 Set Theory 3.1 Sets and Subsets A well-defined collection of objects (the set of outstanding people, outstanding is very.
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Lecture 8 Median and Order Statistics. Median and Order Statistics2 Order Statistics 問題敘述 在 n 個元素中,找出其中第 i 小的元素。 i = 1 ,即為找最小值。 i = n ,即為找最大值。 i = 或 ,即為找中位數。
©Ming-chi Chen 社會統計 Page.1 社會統計 第十講 相關與共變. ©Ming-chi Chen 社會統計 Page.2 Covariance, 共變量 當 X, Y 兩隨機變數不互為獨立時,表示 兩者間有關連。其關連的形式有很多種, 最常見的關連為線性的共變關係。 隨機變數 X,Y.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
代數概論 劉兆樑.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
Chapter 2 聯立線性方程式與矩陣 緒言 線性方程式組 (systems of linear equations) 出現 在多數線性模式 (linear model) 中。根據以往解 題的經驗,讀者們也許已發現方程式的解僅與 該方程式的係數有關,求解的過程也僅與係數 的運算有關,只要係數間的相關位置不改變,
Chapter 3 Growth of Functions Asymptotic notation Θ-notation: f(n) = Θ(g(n)) , g(n) is an asymptotically tight bound for f(n) 。 Θ(g(n)) = {f(n)|
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
第一章 演算法:效率、分析與量級 1.1演算法 1.2發展有效率演算法的重要性 1.3演算法的分析 1.4量級(Order)
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
資料結構實習-一 參數傳遞.
Lecture 7 Sorting in Linear Time. Sorting in Linear Time2 7.1 Lower bounds for sorting 本節探討排序所耗用的時間複雜度下限。 任何一個以比較為基礎排序的演算法,排序 n 個元 素時至少耗用 Ω(nlogn) 次比較。
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2008.
觀測量的權 權的觀念與計算.
公用品.  該物品的數量不會因一人的消費而受到 影響,它可以同時地被多人享用。 角色分配  兩位同學當我的助手,負責:  其餘各人是投資者,每人擁有 $100 , 可以投資在兩種資產上。  記錄  計算  協助同學討論.
: Problem G e-Coins ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10306: Problem G e-Coins 解題者:陳瀅文 解題日期: 2006 年 5 月 2 日 題意:給定一個正整數 S (0
: Beautiful Numbers ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11472: Beautiful Numbers 解題者:邱經達 解題日期: 2011 年 5 月 5 日 題意: 若一個 N 進位的數用到該.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
: GCD - Extreme II ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11426: GCD - Extreme II 解題者:蔡宗翰 解題日期: 2008 年 9 月 19 日 題意: 最多 20,000 組測資,題目會給一個數字.
資料結構實習-二.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
: Expect the Expected ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11427: Expect the Expected 解題者:李重儀 解題日期: 2008 年 9 月 21 日 題意:玩一種遊戲 (a game.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 2. Recurrence Relations (遞迴關係)
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
Learning Method in Multilingual Speech Recognition Author : Hui Lin, Li Deng, Jasha Droppo Professor: 陳嘉平 Reporter: 許峰閤.
Chapter 10 m-way 搜尋樹與B-Tree
人工智慧 第八章 模糊關係及推論 王榮華教授.
JAVA 程式設計與資料結構 第十六章 Hash Tables. Introduction Hash Tables 結構為一個 Array ,稱之為 Bucket array 。 如果想要新增一個物件,要根據這個物件的特性 將其加入 Hash Table 內。 Bucket Array 用 A 來代替,其.
第五章 內積空間 5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程
Extreme Discrete Summation ★★★★☆ 題組: Contest Archive with Online Judge 題號: Extreme Discrete Summation 解題者:蔡宗翰 解題日期: 2008 年 10 月 13 日.
: Help My Brother ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11033: Help My Brother 解題者: 呂明璁 解題日期: 2007 年 5 月 14 日.
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2009.
計算機概論 第6章 數位邏輯設計.
2005/7 Linear system-1 The Linear Equation System and Eliminations.
連續隨機變數 連續變數:時間、分數、重量、……
Microsoft Excel.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
幼兒行為觀察與記錄 第八章 事件取樣法.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 柱體與錐體 1. 找出柱體與錐體的規則 2. 柱體的命名與特性 3. 柱體的展開圖 4. 錐體的命名與特性 5. 錐體的展開圖
Chapter 4. Finite Fields 書名: Cryptography and Network Security Principles and Practices, Fourth Edition 作者: By William Stallings 報告者:陳盈如 2008/04/03.
Presentation transcript:

第4章 有限體

簡介 有限體在密碼學日漸益重要 許多密碼學演算法,都很依賴有限體的特性,尤其是進階加密標準(AES)和橢圓曲線密碼學 群(groups)、環(rings)、和體(fields)是抽象代數或現代代數的基本要素 在抽象代數中,我們關心的是哪些集合元素可以代數運算

群 「群」(有時表示成{G,‧})是內含二元運算的元素集合 請問{N, +}是群嗎? 「群」(有時表示成{G,‧})是內含二元運算的元素集合 對G裡的每組元素(a, b)來說,(a‧b)也是G裡的元素(即符合封閉性closure) 還必須遵守: 結合性:(a.b).c = a.(b.c) 單位元素: e: e.a = a.e = a 反元素: a.a’= e 若 a.b = b.a 即為交換群(abelian group)

循環群Cyclic Group 將群的重複運算定義為群的指數運算: a3 = a.a.a 此外也定義:e=a0 和 a-n = (a’)n 請舉出一個循環群和其生成子! 將群的重複運算定義為群的指數運算: a3 = a.a.a 此外也定義:e=a0 和 a-n = (a’)n 假如G裡的每個元素都是某固定元素a的指數(可以為負),G就是循環群 a: generator (產生器) 循環群必為交換群,而且可能是有限群或無限群 Define exponentiation in a group as the repeated use of the group operator. Note that we are most familiar with it being applied to multiplication, but it is more general than that. If the repeated use of the operator on some value a in the group results in every possible value being created, then the group is said to be cyclic, and a is a generator of (or generates) the group G.

環(ring) 含兩個二元運算(加法和乘法)的數值 加法交換群: 若滿足乘法交換性,即為交換環 整數域(integral domain) {Z, +, }是否為ring? 環(ring) {Z, +, }是否為integral domain? 含兩個二元運算(加法和乘法)的數值 加法交換群: 乘法封閉性 乘法結合性 分配律:a(b+c) = ab + ac 若滿足乘法交換性,即為交換環 整數域(integral domain) 乘法單位元素 0不可為除數 Next describe a ring. In essence, a ring is a set in which we can do addition, subtraction [a – b = a + (–b)], and multiplication without leaving the set. We denote a Ring as {R,+,.} With respect to addition and multiplication, the set of all n-square matrices over the real numbers form a ring. The set of integers with addition & multiplication form an integral domain.

體Field 「體」(有時表示成{F, +, ×})是具有兩個二元運算的元素集合 「體」是可以計算加法、減法、乘法、除法的集合 除法規則的定義是a/b = a( b-1) 「體」常見的例子包括了有理數、實數、複數

群、環、體

模數運算 若a 為整數、n 為正整數 將a mod n 的值定義為a 除n 的餘數 整數n稱為模數 若(a mod n ) =( b mod n ) 整數a、b是n的同餘 寫成a ≡ b(mod n) 11 mod 7 = ? -11 mod 7 = ?

除數 若b ≠ 0而a 、b 、m 皆為整數,且某個數值m能讓 a = mb 例如1,2,3,4,6,8,12,24都可以整除24 通常以b|a表示b 能整除a 而b也就是a的因數(divisor) 例如1,2,3,4,6,8,12,24都可以整除24

模數算術 若n|(a - b),a ≡ b(mod n) 若a ≡ b(mod n),b ≡a(mod n) 若a ≡ b(mod n)且b ≡ c(mod n),a ≡ c(mod n)

模數算術 Zn是小於n的非負整數集合: Zn = {0, 1, … , n-1} 一般運算所沒有的兩項特性: 若(a+b)=(a+c) mod n,則b=c mod n 但a、n 互為質數,且若(a.b)=(a.c) mod n,則b=c mod n

模數為8的模數加法運算 + 1 2 3 4 5 6 7 請畫出8的模數乘法運算

最大公因數(GCD) 數論的共同問題 若a、b、m為整數,對m來說,如果a = mb,非零的b就是a的因數 GCD(a, b)表示a和b的最大公因數;正整數c若符合以下兩點,就是a、b的最大公因數: c是a、b的因數 a、b的任何因數也是c的因數 例如GCD(60,24) = 12 若兩整數a、b只有正公因數1,則a、b互為質數 以等式表示即為 GCD(a, b) = 1 例如 GCD(8,15) = 1(8、15互為質數)

歐幾里德演算法 找出最大公因數的有效方法 對任何非負整數a和任何正整數b而言: 歐幾里德演算法計算最大公因數的方式: GCD(a,b) = GCD(b, a mod b) 歐幾里德演算法計算最大公因數的方式: EUCLID(a,b) 1. A = a; B = b 2. if B = 0 return A = gcd(a, b) 3. R = A mod B 4. A = B 5. B = R 6. goto 2

範例:GCD(1970,1066) 1970 = 1 x 1066 + 904 gcd(1066, 904) 1066 = 1 x 904 + 162 gcd(904, 162) 904 = 5 x 162 + 94 gcd(162, 94) 162 = 1 x 94 + 68 gcd(94, 68) 94 = 1 x 68 + 26 gcd(68, 26) 68 = 2 x 26 + 16 gcd(26, 16) 26 = 1 x 16 + 10 gcd(16, 10) 16 = 1 x 10 + 6 gcd(10, 6) 10 = 1 x 6 + 4 gcd(6, 4) 6 = 1 x 4 + 2 gcd(4, 2) 4 = 2 x 2 + 0 gcd(2, 0)

有限體(Finite Fields,Galois Fields) 有限體是加密的關鍵角色 我們可以證明有限體的級數(元素數目)必須是質數的乘冪,也就是pn(n為正整數) 級數Pn的有限體通常以GF(Pn)表示 經常使用: GF(p) GF(2n)

GF(p) 對質數p而言,級數p的有限體GF(p)定義成整數集合Zp {0, 1, …, p-1},以及算術運算模數p,會形成有限體 因為每個0以外的元素都含有乘法反元素! w 與p 互為質數,所以若將Zp的所有元素乘上w ,產生的餘數將會是所有Zp元素的重排,因此其中某個餘數必為1 Zp 裡的某些整數乘上w 之後的餘數為1。這種整數是w 的乘法反元素,稱為w-1,因此Zp 實際上就是有限體

GF(7) 乘法範例  1 2 3 4 5 6

找出乘法反元素 EXTENDED EUCLID(m, b) 1. (A1, A2, A3)=(1, 0, m); (B1, B2, B3)=(0, 1, b) 2. if B3 = 0 return A3 = gcd(m, b); no inverse 3. if B3 = 1 return B3 = gcd(m, b); B2 = b–1 mod m 4. Q = A3 div B3 5. (T1, T2, T3)=(A1 – Q B1, A2 – Q B2, A3 – Q B3) 6. (A1, A2, A3)=(B1, B2, B3) 7. (B1, B2, B3)=(T1, T2, T3) 8. goto 2

GF(1759)裡的550乘法反元素 Q A1 A2 A3 B1 B2 B3 — 1 1759 550 3 –3 109 5 –5 16 1759 550 3 –3 109 5 –5 16 21 106 –339 4 –111 355

多項式運算 n 階多項式(polynomial)可表示為(整數n ≧ 0): 多項式運算分成三種不同類型: f(x) = anxn + an-1xn-1 + … + a1x + a0 = ∑ aixi 多項式運算分成三種不同類型: 使用代數基本規則的一般多項式運算 將係數取p 同餘的多項式運算 係數是在GF(p)裡、而且定義成多項式m(x)同餘的多項式運算(m(x)的最高次方為整數n) Next introduce the interesting subject of polynomial arithmetic, using polynomials in a single variable x, with several variants as listed above. Note we are usually not interested in evaluating a polynomial for any particular value of x, which is thus referred to as the indeterminate.

一般多項式運算 這類多項式是以係數集合定義 多項式的加法和減法是以係數處理 例如 f(x) = x3 + x2 + 2且 g(x) = x2 – x + 1,那麼: f(x) + g(x) = x3 + 2x2 – x + 3 f(x) – g(x) = x3 + x + 1 f(x) x g(x) = x5 + 3x2 – 2x + 2 Polynomial arithmetic includes the operations of addition, subtraction, and multiplication, defined in the usual way, ie add or subtract corresponding coefficients, or multiply all terms by each other. The examples are from the text, with working in Stallings Figure 4.3.

係數在Zp的多項式運算 係數可以是「體」F的元素 這種情況的多項式所形成的集合會是環,因此稱為多項式環 (將每個多項式視為元素) 大多對 mod 2 最感興趣 也就是所有係數皆為0或1 例如 f(x) = x3 + x2 且 g(x) = x2 + x + 1,那麼: f(x) + g(x) = x3 + x + 1 f(x) x g(x) = x5 + x2 其加法單位元素為何?

多項式除法 任何多項數可寫成: 如果沒有餘數 如果g(x)除了1和本身以外,沒有其他的因數多項式,稱為不可分解或質數多項式 GF(2)中的x4+1可分解嗎? 任何多項數可寫成: f(x) = q(x) g(x) + r(x) 可解釋 r(x) 是為餘數 r(x) = f(x) mod g(x) 如果沒有餘數 就表示g( x)整除f( x ) 可以表示成g( x ) / f( x ) 如果g(x)除了1和本身以外,沒有其他的因數多項式,稱為不可分解或質數多項式 GF(2)中的x3+x+1可分解嗎?

找出最大公因數 可以改寫歐幾里德演算法來計算: 找出多項式的最大公因數c(x) = GCD(a(x), b(x)) c( x )能整除a( x )和b( x ) a( x )和b( x )的任何因數也是c( x )的因數 可以改寫歐幾里德演算法來計算: EUCLID[a(x), b(x)] 1. A(x) = a(x); B(x) = b(x) 2. if B(x) = 0 return A(x) = gcd[a(x), b(x)] 3. R(x) = A(x) mod B(x) 4. A(x) = B(x) 5. B(x) = R(x) 6. goto 2

建立GF(2n) 模數多項式算術 由此種算術形成有限體 係數為取 2同餘 維度大於n之多項式取m(x)之同餘多項式,其中m(x)為某一最高維度為n之質數多項式 在GF(23)中, m(x) = x3+x2+1 OR m(x) = x3+x+1 由此種算術形成有限體 每個元素有在其乘法反元素 Consider now the case of polynomial arithmetic with coordinates mod 2 and polynomials mod an irreducible polynomial m(x). That is Modular Polynomial Arithmetic uses the set S of all polynomials of degree n-1 or less over the field Zp. With the appropriate definition of arithmetic operations, each such set S is a finite field. The definition consists of the following elements: Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules of algebra, with the following two refinements. 2. Arithmetic on the coefficients is performed modulo p. 3. If multiplication results in a polynomial of degree greater than n-1, then the polynomial is reduced modulo some irreducible polynomial m(x) of degree n. That is, we divide by m(x) and keep the remainder. This forms a finite field. And just as the Euclidean algorithm can be adapted to find the greatest common divisor of two polynomials, the extended Euclidean algorithm can be adapted to find the multiplicative inverse of a polynomial.

範例 GF(23)的 (x2+1) 是 1012,(x2+x+1) 是 1112 加法運算 乘法運算 (get q(x) & r(x)) (x2+1) + (x2+x+1) = x 101 XOR 111 = 0102 乘法運算 (x+1).(x2+1) = x.(x2+1) + 1.(x2+1) = x3+x+x2+1 = x3+x2+x+1 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 101 = 11112 (get q(x) & r(x)) (x3+x2+x+1 ) mod (x3+x+1) = 1.(x3+x+1) + (x2) = x2 1111 mod 1011 = 1111 XOR 1011 = 01002

範例 GF(23)

找出乘法反元素的演算法

求x7+x+1在 GF(28)之乘法反元素範例

使用產生器 利用相同的不可分解多項式,也能定義GF(2n)有限體 級數為q的有限體F產生器g是一個元素,這個元素的第一個q – 1次方能產生F所有非零元素 也就是說,這個F的元素是由0, g0, g1, …, gq-2組成 如果f(b) = 0,F裡的元素b就稱為根 不可分解多項式的根g,就是定義在此多項式的有限體的產生器

GF(23)之generator m(x): x3+x+1 f(g) = g3 + g + 1 = 0  g3 = g + 1 g4 = g(g3) = g(g + 1) = g2 + g g5 = g(g4) = g(g2 + g) = g3 + g2 = g2 + g + 1 ….

總結 群、環、體 整數模數算術 歐幾里德演算法 GF(p)有限體 GF(2n)多項式運算