Lexical Analysis Compiler Baojian Hua
Compiler source program target program compiler
Front and Back Ends source program target program front end back end IR
Front End source code abstract syntax tree lexical analyzer parser tokens IR semantic analyzer
Lexical Analyzer The lexical analyzer translates the source program into a stream of lexical tokens Source program: stream of characters vary from language to language (ASCII or Unicode, or … ) Lexical token: compiler internal data structure that represents the occurrence of a terminal symbol vary from compiler to compiler
Conceptually character sequence token sequence lexical analyzer
Example Recall the min-ML language in “code3” prog -> decs decs -> dec; decs | dec -> val id = exp | val _ = printInt exp exp -> id | num | exp + exp | true | false | if (exp) then exp else exp | (exp)
Example val x = 3; val y = 4; val z = if (2) then (x) else y; val _ = printInt z; VAL IDENT(x) ASSIGN INT(3) SEMICOLON VAL IDENT(y) ASSIGN INT(4) SEMICOLON VAL IDENT(z) ASSIGN IF LPAREN INT(2) RPAREN THEN LPAREN IDENT(x) RPAREN ELSE IDENT(y) SEMICOLON VAL UNDERSCORE ASSIGN PRINTINT INDENT(z) SEMICOLON EOF lexical analysis
Lexer Implementation Options: Write a lexer by hand from scratch boring, error-prone, and too much work see dragon book sec3.4 Automatic lexer generator Quick and easy
Lexer Implementation declarative specification lexical analyzer
Regular Expressions How to specify a lexer? Develop another language Regular expressions What ’ s a lexer-generator? Another compiler …
Basic Definitions Alphabet: the char set (say ASCII or Unicode) String: a finite sequence of char from alphabet Language: a set of strings finite or infinite say the C language
Regular Expression (RE) Construction by induction each c \in alphabet {a} empty \eps {} for M and N, then M|N (a|b) = {a, b} for M and N, then MN (a|b)(c|d) = {ac, ad, bc, bd} for M, then M* (Kleen closure) (a|b)* = {\eps, a, aa, b, ab, abb, baa, … }
Regular Expression Or more formally: e -> {} | c | e | e | e e | e*
Example C ’ s indentifier: starts with a letter ( “ _ ” counts as a letter) followed by zero or more of letter or digit (…) (_|a|b|…|z|A|B|…|Z) (…) (_|a|b|…|z|A|B|…|Z)(_|a|b|…|z|A|B|…|Z|0|…|9) (_|a|b|…|z|A|B|…|Z)(_|a|b|…|z|A|B|…|Z|0|…|9)* It’s really error-prone and tedious…
Syntax Sugar More syntax sugar: [a-z] == a|b| … |z e+ == one or more of e e? == zero or one of e “ a* ” == a* itself e{i, j} == more than i and less than j of e. == any char except \n All these can be translated into core RE
Example Revisted C ’ s indentifier: starts with a letter ( “ _ ” counts as a letter) followed by zero or more of letter or digit (…) (_|a|b|…|z|A|B|…|Z) (…) (_|a|b|…|z|A|B|…|Z)(_|a|b|…|z|A|B|…|Z|0|…|9) [_a-zA-Z][_a-zA-Z0-9]* What about the key word “if”?
Ambiguous Rule A single RE is not ambiguous But in a language, there may be many REs? [_a-zA-Z][_a-zA-Z0-9]* “if” So, for a string, which RE to match?
Ambiguous Rule Two conventions: Longest match: The regular expression that matches the longest string takes precedence. Rule Priority: The regular expressions identifying tokens are written down in sequence. If two regular expressions match the same (longest) string, the first regular expression in the sequence takes precedence.
Lexer Generator History Lexical analysis was once a performance bottleneck certainly not true today! As a result, early research investigated methods for efficient lexical analysis While the performance concerns are largely irrelevant today, the tools resulting from this research are still in wide use
History: A long-standing goal In this early period, a considerable amount of study went into the goal of creating an automatic compiler generator (aka compiler-compiler) declarative compiler specification compiler
History: Unix and C In the mid-1960 ’ s at Bell Labs, Ritchie and others were developing Unix A key part of this project was the development of C and a compiler for it Johnson, in 1968, proposed the use of finite state machines for lexical analysis and developed Lex [CACM 11(12), 1968] read the accompanying paper on course page Lex realized a part of the compiler-compiler goal by automatically generating fast lexical analyzers
The Lex tool The original Lex generated lexers written in C (C in C) Today every major language has its own lex tool(s): sml-lex, ocamllex, JLex, C#lex, … Our topic next: sml-lex concepts and techniques apply to other tools
SML-Lex Specification Lexical specification consists of 3 parts (yet another programming language): User Declarations (plain SML types, values, functions) % SML-LEX Definitions (RE abbreviations, special stuff) % Rules (association of REs with tokens) (each token will be represented in plain SML)
User Declarations User Declarations: User can define various values that are available to the action fragments. Two values must be defined in this section: type lexresult type of the value returned by each rule action. fun eof () called by lexer when end of input stream is reached. (EOF)
SML-LEX Definitions ML-LEX Definitions: User can define regular expression abbreviations: Define multiple lexers to work together. Each is given a unique name. digits = [0-9] +; letter = [a-zA-Z]; %s lex1 lex2 lex3;
Rules Rules: A rule consists of a pattern and an action: Pattern in a regular expression. Action is a fragment of ordinary SML code. Longest match & rule priority used for disambiguation Rules may be prefixed with the list of lexers that are allowed to use this rule. regularExp => (action) ;
Rules Rule actions can use any value defined in the User Declarations section, including type lexresult type of value returned by each rule action val eof : unit -> lexresult called by lexer when end of input stream reached special variables: yytext: input substring matched by regular expression yypos: file position of the beginning of matched string continue (): doesn ’ t return token; recursively calls lexer
Example #1 (* A language called Toy *) prog -> word prog -> word -> symbol -> number symbol -> [_a-zA-Z][_0-9a-zA-Z]* number -> [0-9]+
Example #1 (* Lexer Toy, see the accompany code for detail *) datatype token = Symbol of string * int | Number of string * int exception End type lexresult = unit fun eof () = raise End fun output x = …; % letter = [_a-zA-Z]; digit = [0-9]; ld = {letter}|{digit}; symbol = {letter} {ld}*; number = {digit}+; % {symbol} =>(output (Symbol(yytext, yypos))); {number} =>(output (Number(yytext, yypos)));
Example #2 (* Expression Language * C-style comment, i.e. /* … */ *) prog -> stms stms -> stm; stms -> stm -> id = e -> print e e -> id -> num -> e bop e -> (e) bop -> + | - | * | /
Sample Program x = 4; y = 5; z = x+y*3; print z;
Example #2 (* All terminals *) prog -> stms stms -> stm; stms -> stm -> id = e -> print e e -> id -> num -> e bop e -> (e) bop -> + | - | * | /
Example #2 in Lex (* Expression language, see the accompany code * for detail. * Part 1: user code *) datatype token = Id of string * int | Number of string * int | Print of string * int | Plus of string * int | … (* all other stuffs *) exception End type lexresult = unit fun eof () = raise End fun output x = …;
Example #2 in Lex, cont ’ (* Expression language, see the accompany code * for detail. * Part 2: lex definition *) % letter = [_a-zA-Z]; digit = [0-9]; ld = {letter}|{digit}; sym = {letter} {ld}*; num = {digit}+; ws = [\ \t]; nl = [\n];
Example #2 in Lex, cont ’ (* Expression language, see the accompany code * for detail. * Part 3: rules *) % {ws} =>(continue ()); {nl} =>(continue ()); ”+” =>(output (Plus (yytext, yypos))); ”-” =>(output (Minus (yytext, yypos))); ”*” =>(output (Times (yytext, yypos))); ”/” =>(output (Divide (yytext, yypos))); ”(” =>(output (Lparen (yytext, yypos))); ”)” =>(output (Rparen (yytext, yypos))); ”=” =>(output (Assign (yytext, yypos))); ”;” =>(output (Semi (yytext, yypos)));
Example #2 in Lex, cont ’ (* Expression language, see the accompany code * for detail. * Part 3: rules cont’ *) ”print”=>(output (Print(yytext, yypos))); {sym} =>(output (Id (yytext, yypos))); {num} =>(output (Number(yytext, yypos))); ”/*” => (YYBEGIN COMMENT; continue ()); ”*/” => (YYBEGIN INITIAL; continue ()); {nl} => (continue ());. => (continue ());. => (error (…));
Lex Implementation Lex accepts regular expressions (along with others) So SML-lex is a compiler from RE to a lexer Internal: RE NFA DFA table-driven alog ’
Finite-state Automata (FA) Input String M {Yes, No} M = (, S, q0, F, ) Input alphabet State set Initial state Final states Transition function
Transition functions DFA : S S NFA : S ( S)
DFA example Which strings of as and bs are accepted? Transition function: { (q0,a) q1, (q0,b) q0, (q1,a) q2, (q1,b) q1, (q2,a) q2, (q2,b) q2 } aa bba,b
NFA example Transition function: {(q0,a) {q0,q1}, (q0,b) {q1}, (q1,a) , (q1,b) {q0,q1}} 0 1 a,b ab b
RE -> NFA: Thompson algorithm Break RE down to atoms construct small NFAs directly for atoms inductively construct larger NFAs from small NFAs Easy to implement a small recursion algorithm
RE -> NFA: Thompson algorithm e -> -> c -> e1 e2 -> e1 | e2 -> e1* c e1 e2
RE -> NFA: Thompson algorithm e -> -> c -> e1 e2 -> e1 | e2 -> e1* e1 e2 e1
Example % letter = [_a-zA-Z]; digit = [0-9]; id = {letter} ({letter}|{digit})* ; % ”if” => (IF (yytext, yypos)); {id} => (Id (yytext, yypos)); (* Equivalent to: * “if” | {id} *)
Example ”if” => (IF (yytext, yypos)); {id} => (Id (yytext, yypos)); i f …
NFA -> DFA: Subset construction algorithm (* subset construction: workList algorithm *) q0 <- e-closure (n0) Q <- {q0} workList <- q0 while (workList != \phi) remove q from workList foreach (character c) t <- -closure (move (q, c)) D[q, c] <- t if (t\not\in Q) add t to Q and workList
NFA -> DFA: -closure (* - closure: fixpoint algorithm *) (* Dragon Fig 3.33 gives a DFS-like algorithm. * Here we give a recursive version. (Simpler) *) X <- \phi fun eps (t) = X <- X ∪ {t} foreach (s \in one-eps(t)) if (s \not\in X) then eps (s)
NFA -> DFA: -closure (* - closure: fixpoint algorithm *) (* dragon Fig 3.33 gives a DFS-like algorithm. * Here we give a recursive version. (Simpler) *) fun e-closure (T) = X <- T foreach (t \in T) X <- X ∪ eps(t)
NFA -> DFA: -closure (* -closure: fixpoint algorithm *) (* A BFS-like algorithm. *) X <- empty; fun e-closure (T) = Q <- T X <- T while (Q not empty) q <- deQueue (Q) foreach (s \in one-eps(q)) if (s \not\in X) enQueue (Q, s) X <- X ∪ s
Example ”if” => (IF (yytext, yypos)); {id} => (Id (yytext, yypos)); 1 i 3 f 6 [_a-zA-Z] 7 [_a-zA-Z0-9] 4
Example q0 = {0, 1, 5} Q = {q0} D[q0, “i”] = {2, 3, 6, 7, 8} Q ∪ q1 D[q0, _] = {6, 7, 8} Q ∪ q2 D[q1, “f”] = {4, 7, 8} Q ∪ q3 1 i 3 f 6 [_a-zA-Z] 7 [_a-zA-Z0-9] q0 q1 q2 q3 i f _ 4
Example D[q1, _] = {7, 8} Q ∪ q4 D[q2, _] = {7, 8} Q D[q3, _] = {7, 8} Q D[q4, _] = {7, 8} Q 1 i 3 f 6 [_a-zA-Z] 7 [_a-zA-Z0-9] q0 q1 q2 q3 i f _ q4 _ _ _ _ 4
Example q0 = {0, 1, 5} q1 = {2, 3, 6, 7, 8} q2 = {6, 7, 8} q3 = {4, 7, 8} q4 = {7, 8} 1 i 3 f 6 [_a-zA-Z] 7 [_a-zA-Z0-9] q0 q1 q2 q3 “i”“i” “f”“f” letter- ” i ” q4 ld- ” f ” ld 4
Example q0 = {0, 1, 5} q1 = {2, 3, 6, 7, 8} q2 = {6, 7, 8} q3 = {4, 7, 8} q4 = {7, 8} 1 i 3 f 6 [_a-zA-Z] 7 [_a-zA-Z0-9] q0 q1 q2 q3 “i”“i” “f”“f” letter- ” i ” q4 ld- ” f ” ld 4
Table-driven Algorithm Conceptually, an FA is a directed graph Pragmatically, many different strategies to encode an FA: Matrix (adjacency matrix) sml-lex Array of list (adjacency list) Hash table Jump table (switch statements) flex Balance between time and space
Example q0 q1 q2 q3 “i”“i” “f”“f” letter- ” i ” q4 ld- ” f ” ld state\char “i”“i”“f”“f” letter- ” i ” - ” f ” … other q0q1q2 … error q1q4q3q4 … error q2q4 … error q3q4 … error q4 … error ”if” => (IF (yytext, yypos)); {id} => (Id (yytext, yypos)); stateq0q1q2q3q4 actionId IFId
DFA Minimization: Hopcroft ’ s Algorithm q0 q1 q2 q3 “i”“i” “f”“f” letter- ” i ” q4 ld- ” f ” ld stateq0q1q2q3q4 actionId IFId
DFA Minimization: Hopcroft ’ s Algorithm q0 q1 q2 q3 “i”“i” “f”“f” letter- ” i ” q4 ld- ” f ” ld stateq0q1q2q3q4 actionId IFId
DFA Minimization: Hopcroft ’ s Algorithm q0 q1 q2, q4 q3 “i”“i” “f”“f” letter- ” i ” ld- ” f ” ld stateq0q1q2, q4q3 actionId IF
Summary A Lexer: input: stream of characters output: stream of tokens Writing lexers by hand is boring, so we use a lexer generator: ml-lex RE -> NFA -> DFA -> table-driven algo Moral: don ’ t underestimate your theory classes! great application of cool theory developed in mathematics. we ’ ll see more cool apps as the course progresses