1 Methodology for optimization of continuous cover forestry with consideration of recreation and the forest and energy industries Методология оптимизации.

Slides:



Advertisements
Similar presentations
Swedish University of Agricultural Sciences Department of Forest Economics Who wins and who loses from increasing large carnivore stocks in Sweden? or.
Advertisements

Boyce/DiPrima 9th ed, Ch 2.8: The Existence and Uniqueness Theorem Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
1 Optimal CCS, Carbon Capture and Storage, Under Risk International Seminars in Life Sciences Universidad Politécnica de Valencia Thursday Updated.
1 Chapter 12 Forest Economics --Forests cover about 30% of the land surface of the earth; 8,000 years ago, this percentage was about 50 --More than 60%
Forestry in the Slovak Republic Facts and Figures Rastislav Šulek Department of Forest Economics and Management Faculty of Forestry, Technical University.
LECTURE XIII FORESTRY ECONOMICS AND MANAGEMENT. Introduction  If forestry is to contribute its full share to a more abundant life for the world’s increasing.
Economic efficiency criteria n Static efficiency – Maximize net benefits of one optimal rotation n Dynamic efficiency – Maximize net benefits from continuous.
A Cost-Benefit Analysis of Net Based Nursing Education by Niklas Hanes and Sofia Lundberg, Centre for Regional Science at Umeå University (CERUM), Sweden.
Strategic options for the forest sector in Canada with focus on economic optimization, energy and sustainability - Motives for integration in a global.
Examining Clumpiness in FPS David K. Walters Roseburg Forest Products.
Tools for optimal coordination of CCS, power industry capacity expansion and bio energy raw material production and harvesting Peter Lohmander Prof. Dr.
1 Dynamic Economical Optimization of Sustainable Forest Harvesting in Russia with Consideration of Energy, other Forest Products and Recreation Peter Lohmander.
OPTIMAL PRESENT RESOURCE EXTRACTION UNDER THE INFLUENCE OF FUTURE RISK Professor Dr Peter Lohmander SLU, Sweden,
Managerial Economics Prof. M. El-Sakka CBA. Kuwait University Managerial Economics Prof. M. El-Sakka CBA. Kuwait University Managerial Economics in a Global.
ECNE610 Managerial Economics APRIL Dr. Mazharul Islam Chapter-6.
Data set presentation - Swedish NFI data Göran Kempe & Göran Ståhl SLU.
Session 4. Applied Regression -- Prof. Juran2 Outline for Session 4 Summary Measures for the Full Model –Top Section of the Output –Interval Estimation.
Presentation Title Capacity Building Programme on the Economics of Adaptation Supporting National/Sub-National Adaptation Planning and Action Forest Ecosystems:
Site Index Modeling in Poland: Its History and Current Directions Michał Zasada 1,2 and Chris J. Cieszewski 1 1 Warnell School of Forest Resources, University.
School of Geography FACULTY OF ENVIRONMENT School of Geography FACULTY OF ENVIRONMENT GEOG5060 GIS and Environment Dr Steve Carver
1 A Stochastic Differential (Difference) Game Model With an LP Subroutine for Mixed and Pure Strategy Optimization INFORMS International Meeting 2007,
Computer modelling of the concentration dependence of doping in solid state ionic materials Robert A Jackson School of Physical and Geographical Sciences,
Swedish University of Agricultural Sciences Department of Forest Products Run-off quality from sprinkled debarked logs and logs with bark from Picea abies.
Optimal continuous cover forest management: - Economic and environmental effects and legal considerations Professor Dr Peter Lohmander
1 PhD Defence SLU, Dept. of Forest Economics Umea, Sweden, Author: Licentiate Scott Glen Cole, SLU Thesis: Environmental Compensation is not for.
2004 SAES – ARD Workshop Oklahoma City Sept. 28, 2004 Implications and Use of the Counterfactual Study: Results and Conclusions By Wallace E. Huffman C.F.
1 Rational and sustainable international policy for the forest sector with consideration of energy, global warming, risk, and regional development An International.
CHAPTER 14 MULTIPLE REGRESSION
1 CM Optimal Resource Control Model & General continuous time optimal control model of a forest resource, comparative dynamics and CO2 storage consideration.
Application of Stochastic Frontier Regression (SFR) in the Investigation of the Size-Density Relationship Bruce E. Borders and Dehai Zhao.
Agricultural Amenities and Optimal Land Use: The Case of Israel Iddo Kan, §† David Haim. † Mickey Rapaport-Rom † and Mordechai Shechter † § The Department.
1 Optimal Forest Management Under Risk International Seminars in Life Sciences Universidad Politécnica de Valencia Thursday Peter Lohmander.
1 Some new equations presented at NCSU Peter Lohmander.
Thinning as a tool of close to nature forestry Igor Štefančík Forest Research Institute, Zvolen Slovakia.
VUJE, a. s., Okružná 5, Trnava Strengthening the European Union Energy Security Prepared by Peter Líška (Slovak proposal) Brussels, 14th September.
Applied Forest Economy Lennart Eriksson. Co-operation partners Prof Nikolay Moiseev, MSFU Prof Galina Filyushkina, ARICEF Dr Per Hazell, Swedish Forest.
1 Optimal dynamic control of the forest resource with changing energy demand functions and valuation of CO2 storage Presentation at the Conference: The.
Production function  Production function is one of basic and important concepts in economics.  It is the basis for resource economics studies. In the.
Review of SWRCB Water Availability Analysis Emphasis on Dry Creek Water Availability Analysis.
Natural Resource Economics Academic year: Prof. Luca Salvatici Lesson 8: Forestry.
1 Optimal activities over time in a typical forest industry company in the presence of stochastic markets - A flexible approach and possible extensions!
Optimal continuous natural resource extraction with increasing risk in prices and stock dynamics Professor Dr Peter Lohmander
1-1 Copyright © 2014, 2011, and 2008 Pearson Education, Inc.
WOOD 492 MODELLING FOR DECISION SUPPORT Lecture 14 Sensitivity Analysis.
ACADEMIA – FOREST MACHINE INDUSTRY COLLABORATION IN SUSTAINABLE ENERGY PRODUCTION University of Eastern Finland Faculty of Science and Forestry Teijo Palander.
Optimization of adaptive control functions in multidimensional forest management via stochastic simulation and grid search Version Peter Lohmander.
OPTIMAL STOCHASTIC DYNAMIC CONTROL OF SPATIALLY DISTRIBUTED INTERDEPENDENT PRODUCTION UNITS Version Peter Lohmander Professor Dr., Optimal Solutions.
Fundamental Principles of Optimal Continuous Cover Forestry Linnaeus University Research Seminar (RESEM) Tuesday , , Lecture Hall:
Stochastic dynamic programming with Markov chains
BAE 6520 Applied Environmental Statistics
A general dynamic function for the basal area of individual trees derived from a production theoretically motivated autonomous differential equation Version.
Bio-economy opens opportunities for the growth of boreal forest sector
Environmental and Natural Resource Economics 3rd ed. Jonathan M
An International Project of the Future
Effect of Diesel Generator Characteristics on the Design Optimization of a Stand- alone Hybrid Micro-power System for Baghdad City By Dr. Sameer Saadoon.
Russian–Swedish Co-operation in Higher Forest Education and Training Moscow, November 17th-18th, 2009 Block III co-operation partners: Moscow State Forest.
Ch 11.1: The Occurrence of Two-Point Boundary Value Problems
Technical Change, Competition and Vertical Integration
Characterizing Stock Market Behavior Correlations in Complex Networks
Forest management optimization - considering biodiversity, global warming and economics goals Workshop at: Gorgan University of Agricultural Sciences.
Panagiota DIGKOGLOU Jason PAPATHANASIOU
Forest management optimization - considering biodiversity, global warming and economics goals Workshop at: Gorgan University of Agricultural Sciences.
Technical Change, Competition and Vertical Integration
Forest management optimization - considering biodiversity, global warming and economics goals Workshop at: Gorgan University of Agricultural Sciences.
2018 ОНЫ 4 ДҮГЭЭР САРЫН 25-НИЙ ӨДӨР
Lohmander, P., Adaptive Optimization of Forest
CHAPTER 14 MULTIPLE REGRESSION
Optimal stochastic control in continuous time with Wiener processes: - General results and applications to optimal wildlife management KEYNOTE Version.
Quadratic Equations Chapter 4.
Lectures, Visit and Mountain Excursion at Shandong Agricultural University Peter Lohmander Professor of Forest Management and Economic Optimization, SLU,
Presentation transcript:

1 Methodology for optimization of continuous cover forestry with consideration of recreation and the forest and energy industries Методология оптимизации непрерывного неистощительного лесопользования, как для обеспечения рекреационных услуг, так и для переработки в лесной и энергетической промышленности Peter Lohmander & Zazykina Liubov FORESTS OF EURASIA - PODMOSKOVNY VECHERA Moscow State Forest University September , 2010

2 Профессор Петер Ломандер Шведский университет сельского хозяйства (SLU), Умео, Швеция Электронная почта: Аспирантка Зазыкина Любовь Московский государственный университет леса (МГУЛ) 1-ая институтская ул., Мытищи, Московская обл., Россия Электронная почта:

3 Professor Peter Lohmander Department of Forest Economics, Faculty of Forest Science, Swedish University of Agricultural Sciences (SLU), SE – Umea, Sweden Web: Профессор Петер Ломандер Шведский университет сельского хозяйства (SLU), Умео, Швеция Web:

4 Forests are used for many different purposes. It is important to consider these simultaneously. A new methodological approach to optimization of forest management with consideration of recreation and the forest and energy industries has been developed. It maximizes the total present value of continuous cover forest management and takes all relevant costs and revenues into account, including set up costs. Леса используются и могут использоваться в разных целях. Важно учесть все эти цели одновременно, разработан новый методологический подход к оптимизации лесопользовании с учетом обеспечения рекреационных услуг, переработки в лесной и энергетической промышленности. Он максимизирует общую текущую дисконтированную стоимость непрерывного неистощительного лесопользования и учитывает все затраты будущего периода и доходы, включая начальные затраты.

5 In several regions, in particular close to large cities, such as Paris and Moscow, the economic importance of recreation forestry is very high in relation to the economic results obtained from traditional “production oriented” forest management. This does however not automatically imply that production of timber, pulpwood and energy assortments can not be combined with rational recreation forestry. В некоторых районах, в особенности вблизи больших городов, таких как Париж или Москва, экономическая важность рекреационного лесопользования очень высока, по сравнению с экономическими результатами полученными при традиционным лесопользовании. Однако, это не означает автоматически, что рациональное рекреационное лесопользование не может быть скомбинировано с производством пиломатериалов, целлюлозы и энергии.

6 The optimization model includes one section where the utility of recreation, which may be transformed to the present value of net revenues from recreation, is added to the traditional objective function of the present value of the production of timber, pulpwood and energy assortments. In typical cases, individuals interested in recreation prefer forests with low density. Использование рекреационных услуг, которое может быть преобразовано в величину чистых доходов, от этих услуг и обавлено к традиционным целевым доходам от производства пиломатериалов, целлюлозы и энергии. В типичных случаях, предпочитаются леса под рекреацию с низкой плотностью насаждений, это означает, что лесопользование является оптимальным, когда учитываются все цели при осуществлении более частых рубок ухода в отличие от лесопользования, которое направлено только на производство пиломатериалов целлюлозы и энергии.

7 This means that forest management that is optimal when all objectives are considered, typically is characterized by larger thinning harvests than forest management that only focuses on the production of timber, pulpwood and energy assortments. же влияние на оптимизацию лесопользования, как увеличивающаяся важность рекреационных услуг в зонах близких, к большим городам.

8 The results also show that large set up costs have the same type of effect on optimal forest management as an increasing importance of recreation, close to large cities. Both of these factors imply that the harvest volumes per occation increase and that the time interval between harvests increases. Even rather small set up costs imply that the continuous cover forest management schedule gives a rather large variation in the optimal stock level over time. Оба этих фактора подразумевают, что объем вырубок на ед. времени увеличиваются, а так же увеличивается сам временной интервал между вырубками. Сравнительные малые начальные затраты означают что апланированное непрерывное неистощительное лесопользование дает относительно много вариаций оптимального уровня запаса древесины во времени.

9

10 Growth Compare: Verhulst, Pierre-François (1838). "Notice sur la loi que la population poursuit dans son accroissement"."Notice sur la loi que la population poursuit dans son accroissement" Correspondance mathématique et physique 10: pp. 113–121.

11

12

13 A separable differential equation

14

15

16

17

18

19

20

21

22

23

24 Stock (m3/ha) Time (Years)

25

26 The Present Value Function Profit from the first harvest Present value of an infinite series of profits from the later harvest

27 Initial stock level Rate of interest Harvest interval

28 * * *

29 y=250 y=200 y=150 Present Value Harvest Interval (Years) y = First Harvest Volume (m3/ha) (SEK/ha)

30 First Harvest Volume (m3/ha) Harvest Interval (Years) C = 500 Vertical Scale = Present Value (SEK/ha)

31 First Harvest Volume (m3/ha) Harvest Interval (Years) C = 500 Vertical Scale = Present Value (SEK/ha)

32 Harvest Interval (Years) First Harvest Volume (m3/ha) C = 500 Vertical Scale = Present Value (SEK/ha)

33 First Harvest Volume (m3/ha) Harvest Interval (Years) C = 500 Vertical Scale = Present Value (SEK/ha)

34 First Harvest Volume (m3/ha) Stock Level Directly After Harvest (m3/ha) C = 100

35 Stock Level Directly After Harvest (m3/ha) Harvest Interval (Years) C = 100 Vertical Scale = Present Value (SEK/ha)

36 C = 100 C = 500

37 Stock Level Directly After Harvest (m3/ha) Harvest Interval (Years) C = 100 C = 500 Vertical Scale = Present Value (SEK/ha)

38 C = 2000

39 Stock Level Directly After Harvest (m3/ha) Harvest Interval (Years) C = 2000 Vertical Scale = Present Value (SEK/ha)

40 Stock Level Directly After Harvest (m3/ha) Harvest Interval (Years) C = 100 C = 2000 Vertical Scale = Present Value (SEK/ha)

41 Stock Level Directly After Harvest (m3/ha) Harvest Interval (Years) C = 100 C = 500 Vertical Scale = Present Value (SEK/ha)

42 REM REM CCF0403 REM Peter Lohmander REM OPEN "outCCF.dat" FOR OUTPUT AS #1 PRINT #1, " x1 t h1 PV" FOR x1 = 10 TO 150 STEP 20 FOR t = 1 TO 31 STEP 5 c = 500 p = 200 r =.03 s =.05 x0 = 300 h0 = x0 - x1 x2 = 1 / (1 / (1 / x1 - 1 / 400) * EXP(-.05 * t)) h1 = x2 - x1 multip = 1 / (EXP(r * t) - 1) pv0 = -c + p * h0 pv1 = -c + p * h1 PV = pv0 + pv1 * multip PRINT #1, USING "####"; x1; PRINT #1, USING "####"; t; PRINT #1, USING "####"; h1; PRINT #1, USING "#######"; PV NEXT t NEXT x1 CLOSE #1 END

43 x1 t h1 PV

44 REM REM OCC0403 REM Peter Lohmander REM OPEN "outOCC.dat" FOR OUTPUT AS #1 PRINT #1, " C X1opt topt PVopt h1opt x2opt" FOR c = 0 TO 3000 STEP 100 FOPT = x1opt = 0 topt = 0 pvopt = 0 h1opt = 0 x2opt = 0

45 FOR x1 = 10 TO 150 STEP 5 FOR t = 1 TO 61 STEP 1 p = 200 r =.03 s =.05 x0 = 300 h0 = x0 - x1 x2 = 1 / (1 / (1 / x1 - 1 / 400) * EXP(-.05 * t)) h1 = x2 - x1 multip = 1 / (EXP(r * t) - 1) pv0 = -c + p * h0 pv1 = -c + p * h1 PV = pv0 + pv1 * multip IF PV > pvopt THEN x1opt = x1 IF PV > pvopt THEN topt = t IF PV > pvopt THEN h1opt = h1 IF PV > pvopt THEN x2opt = x2 IF PV > pvopt THEN pvopt = PV NEXT t NEXT x1 PRINT #1, USING "######"; c; x1opt; topt; pvopt; h1opt; x2opt NEXT c CLOSE #1 END

46 Optimal Stock Level Directly After Harvest (m3/ha) Set up Cost (SEK/ha)

47 Optimal Stock Level Directly Before Thinning Harvest (m3/ha) Set up Cost (SEK/ha)

48 Optimal Thinning Harvest Volumes per occation (m3/ha) Set up Cost (SEK/ha)

49 Optimal Harvest Interval (Years) Set up Cost (SEK/ha)

50 Optimal Present Value (SEK/ha) Set up Cost (SEK/ha)

51 What happens to the optimal forest management schedule if we also consider the value of recreation?

52 Source: Zazykina, L., Lohmander, P., The utility of recreation as a function, of site characteristics: Methodological suggestions and a preliminary analysis, Proceedings of the II international workshop on Ecological tourism, rends and perspectives on development in the global world, Saint Petersburg Forest Technical Academy, April 15-16, 2010, Alekseevskiy forest

53 Source: Zazykina, L., Lohmander, P., The utility of recreation as a function, of site characteristics: Methodological suggestions and a preliminary analysis, Proceedings of the II international workshop on Ecological tourism, rends and perspectives on development in the global world, Saint Petersburg Forest Technical Academy, April 15-16, 2010,

54 Interpretations and observations: #1: Several alternative interpretations are possible! #2: Furthermore, the results are most likely sensitive to local conditions, weather conditions etc..

55 Assumptions: The ideal average forest density, from a recreational point of view, is 0.5. Directly before thinning, the density is 0.8. As a result of a thinning, the density in a stand is reduced in proportion to the harvest volume. The density of a stand is a linear function of time between thinnings. The value of recreation is a quadratic function of average stand density in the forest area. The recreation value is zero if the density is 0 or 1. Under optimal density conditions, the value of recreation, per individual, hectare and year, is 30 EURO. (The value 30 has no empirical background.)

56 Approximation in the software: D =.8 * ((x1 + x2) / (2 * x2)) IF D < 0 THEN D = 0 IF D > 1 THEN D = 1 U = 120 * D * D * D PVtotU = n / r * U

57 N(Y) = Number of persons per 100 m2 a function of Y = Basal Area (m2/ha), Moscow DURING THE VERY HOT SUMMER OF 2010 Forest visitors seem to prefer forests with rather high basal area levels during hot periods.

58

59

60

61 What was the most popular basal area during the hot summer of 2010 from a recreational point of view?

62 Scenic Beauty, SB, as a function of basal area, BA. The graph has been constructed using equation SB = – BA/t ln (BA), which is found in Hull & Buhyoff (1986).

63 Optimization of present value of roundwood production and recreation

64 REM OP REM Peter and Luba REM OPEN "outOP.txt" FOR OUTPUT AS #1 PRINT #1, " n x1opt topt h1opt x2opt pvopt optPV opttotU" FOR n = 0 TO 550 STEP 55 pvopt = optpv = x1opt = 0 topt = 0 h1opt = 0 x2opt = 0 c = 50 p = 40 r =.03

65 FOR x1 = 10 TO 150 STEP 5 FOR t = 1 TO 100 STEP 1 x0 = 158 h0 = x0 - x1 x2 = 1 / (1 / (1 / x1 - 1 / 316) * EXP( * t)) h1 = x2 - x1 multip = 1 / (EXP(r * t) - 1) pv0 = -c + p * h0 pv1 = -c + p * h1 PV = pv0 + pv1 * multip

66 D =.8 * ((x1 + x2) / (2 * x2)) IF D < 0 THEN D = 0 IF D > 1 THEN D = 1 U = 120 * D * D * D PVtotU = n / r * U TPV = PV + PVtotU IF TPV > pvopt THEN x1opt = x1 IF TPV > pvopt THEN topt = t IF TPV > pvopt THEN h1opt = h1 IF TPV > pvopt THEN x2opt = x2 IF TPV > pvopt THEN optpv = PV IF TPV > pvopt THEN opttotU = PVtotU IF TPV > pvopt THEN pvopt = TPV NEXT t NEXT x1

67 Approximation in the software: D =.8 * ((x1 + x2) / (2 * x2)) IF D < 0 THEN D = 0 IF D > 1 THEN D = 1 U = 120 * D * D * D PVtotU = n / r * U

68 PRINT #1, USING "######"; n; x1opt; topt; PRINT #1, USING "######"; h1opt; x2opt; PRINT #1, USING "########.##"; pvopt; optpv; opttotU NEXT n CLOSE #1 END

69 Optimal results: ( outOP.txt)

70 Optimal stock level directly after harvest

71 Optimal stock level directly before harvest

72 Optimal thinning volume per occation

73 Optimal time interval between thinnings

74 In forest areas with many visitors, close to large cities, the present value of recreation may be much higher than the present value of timber production.

75

76 The case with no visitors

77 The case with many visitors that prefer low density forests

78 Conclusions: A new methodological approach to optimization of forest management with consideration of recreation and the forest and energy industries has been developed. It maximizes the total present value of continuous cover forest management and takes all relevant costs and revenues into account, including set up costs. Optimal solutions to empirically investigated cases have been analysed and reported.

79 Thank you for listening! Questions?