Probing Vacuum Entanglement Benni Reznik Tel-Aviv University In collaboration with: A. Botero, J. I. Cirac, A. Retzker, J. Silman.

Slides:



Advertisements
Similar presentations
Strong Monogamy and Genuine Multipartite Entanglement Gerardo Adesso Informal Quantum Information Gathering 2007 The Gaussian Case Quantum Theory group.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Engineering correlation and entanglement dynamics in spin chains T. S. CubittJ.I. Cirac.
Kondo Physics from a Quantum Information Perspective
Frustration of Decoherence and Entanglement-sharing in the Spin-bath Andrew Hines Christopher Dawson Ross McKenzie Gerard Milburn.
Field quantization via discrete approximations: problems and perspectives. Jerzy Kijowski Center for Theoretical Physics PAN Warsaw, Poland.
Bell inequality & entanglement
Emergence of Quantum Mechanics from Classical Statistics.
1 Multiphoton Entanglement Eli Megidish Quantum Optics Seminar,2010.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Quantum fermions from classical statistics. quantum mechanics can be described by classical statistics !
Analysis of quantum entanglement of spontaneous single photons
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Angular correlation in a speckle pattern of cold atomic clouds Eilat 2006 Ohad Assaf and Eric Akkermans Technion – Israel Institute of Technology.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Crystal Lattice Vibrations: Phonons
Lattice QCD 2007Near Light Cone QCD Near Light Cone QCD On The Lattice H.J. Pirner, D. Grünewald E.-M. Ilgenfritz, E. Prokhvatilov Partially funded by.
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
Entanglement Measures in Quantum Computing About distinguishable and indistinguishable particles, entanglement, exchange and correlation Szilvia Nagy Department.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Is Communication Complexity Physical? Samuel Marcovitch Benni Reznik Tel-Aviv University arxiv
Multipartite Entanglement Measures from Matrix and Tensor Product States Ching-Yu Huang Feng-Li Lin Department of Physics, National Taiwan Normal University.
Experiments With Entangled Photons Paulo Henrique Souto Ribeiro Instituto de Física - UFRJ Summer School of Optics Concépcion January/2010.
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
Entropy localization and distribution in the Hawking radiation Horacio Casini CONICET-Intituto Balseiro – Centro Atómico Bariloche.
Search for CP violation in  decays R. Stroynowski SMU Representing CLEO Collaboration.
Manipulating Continuous Variable Photonic Entanglement Martin Plenio Imperial College London Institute for Mathematical Sciences & Department of Physics.
Chang-Kui Duan, Institute of Modern Physics, CUPT 1 Harmonic oscillator and coherent states Reading materials: 1.Chapter 7 of Shankar’s PQM.
Test for entanglement: realignment criterion, entanglement witness and positive maps Kai Chen † CQIQC, Toronto, July 2004 † Kai Chen is now a postdoctoral.
Germán Sierra, Instituto de Física Teórica UAM-CSIC, Madrid 9th Bolonia Workshop in CFT and Integrable Systems Bolonia, Sept 2014.
Quantum information Theory: Separability and distillability SFB Coherent Control €U TMR J. Ignacio Cirac Institute for Theoretical Physics University of.
Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)
Steering witnesses and criteria for the (non-)existence of local hidden state (LHS) models Eric Cavalcanti, Steve Jones, Howard Wiseman Centre for Quantum.
Vacuum Entanglement B. Reznik (Tel Aviv Univ.) Alonso Botero (Los Andes Univ. Columbia) Alex Retzker (Tel Aviv Univ.) Jonathan Silman (Tel Aviv Univ.)
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
H ij Entangle- ment flow multipartite systems [1] Numerically computed times assuming saturated rate equations, along with the lower bound (solid line)
Tensor networks and the numerical study of quantum and classical systems on infinite lattices Román Orús School of Physical Sciences, The University of.
Engineering the Dynamics Engineering Entanglement and Correlation Dynamics in Spin Chains Correlation Dynamics in Spin Chains [1] T. S. Cubitt 1,2 and.
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Entanglement between Collective Operators in a Linear Harmonic Chain Johannes Kofler 1, Vlatko Vedral 2, Myungshik S. Kim 3, Časlav Brukner 1,4 1 University.
IEN-Galileo Ferraris - Torino - 16 Febbraio 2006 Scheme for Entangling Micromeccanical Resonators by Entanglement Swapping Paolo Tombesi Stefano Mancini.
DYNAMICS OF OPEN Q-SYSTES FROM A PERSPECTIVE OF QIT IMS, Imperial College, London, 18 January 2007 Vladimír Bužek Research Center for Quantum Information.
For long wavelength, compared to the size of the atom The term containing A 2 in the dipole approximation does not involve atomic operators, consequently.
Physical Chemistry III (728342) The Schrödinger Equation
Nonlocality test of continuous variable state 17, Jan,2003 QIPI meeting Wonmin Son Queen’s University, Belfast.
Purity and Continuous Quantum Phase Transition in XX spin chain Wonmin Son In collaboration with; Luigi Amico (Madrid), Francesco Plastina (Italy), Vlatko.
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
Non-Locality Swapping and emergence of quantum correlations Nicolas Brunner Paul Skrzypczyk, Sandu Popescu University of Bristol.
Entanglement Loss Along RG Flows Entanglement and Quantum Phase Transitions José Ignacio Latorre Dept. ECM, Universitat de Barcelona Newton Institute,
Quantum Theory of the Coherently Pumped Micromaser István Németh and János Bergou University of West Hungary Department of Physics CEWQO 2008 Belgrade,
Quantum Non-locality: From Bell to Information Causality Alex Thompson Physics 486 March 7, 2016.
Entanglement Detection Gühne & Tóth, Physics Reports 474 (2009). Superradiance: … Theory of Collective Spontaneous Emission Gross & Haroche, Physics Reports.
International Scientific Spring 2016
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Panjin Kim*, Hosho Katsura, Nandini Trivedi, Jung Hoon Han
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Jiří Minář Centre for Quantum Technologies
Information-Theoretical Analysis of the Topological Entanglement Entropy and Multipartite correlations Kohtaro Kato (The University of Tokyo) based on.
Recent Developments in Quantum Physics
Generalized DMRG with Tree Tensor Network
Introduction Is there entanglement of black body radiation such as cosmic background radiation or black hole radiation? Entanglement of non-interacting.
Presentation transcript:

Probing Vacuum Entanglement Benni Reznik Tel-Aviv University In collaboration with: A. Botero, J. I. Cirac, A. Retzker, J. Silman.

Vacuum Entanglement Tel Aviv University Eilat, Feb 27, 2006 Motivation: QI Fundamental: SR QM QI: natural set up to study Ent. causal structure ! LO. H 1, many body Ent. Q. Physics New “quantum effects”? Q. phase transitions, Entropy Area law. A B

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 Continuum results: BH Entanglement entropy: Unruh (76), Bombelli et. Al. (86), Srednicki (93), Callan & Wilczek (94). Albebraic Field Theory: Summers & Werner (85), Halvarson & Clifton (00). Entanglement probes: Reznik (00), Reznik, Retzker & Silman (03). Verch & Werner (04). Discrete models: Harmonic chains: Audenaert et. al (02), Botero & Reznik (04). Spin chains: Wootters (01), Nielsen (02), Latorre et. al. (03). Linear Ion trap: Retzker, Cirac & Reznik (04). Background

Entanglement in the vacuum Tel Aviv University  Probing vacuum Entanglement  Vacuum Entanglement in field theory. Eilat, Feb 27, 2006  Vacuum entanglement in a the harmonic lattice.  Properties of entanglement  Spatial structure of entanglement in 1D and 2D lattices. A. Retzker, I. J. Cirac, B. Reznik Phys. Rev. Lett. 93, (2005)  Detection of “Vacuum” entanglement in an ion trap. A. Botero, B. Reznik, Phys. Rev. A 67, (2003). A. Botero, B. Reznik, Phys. Rev. A 70, (2004). A. Botero, B. Reznik, Phys. Lett. A 331, 39, (2004). B. Reznik, Found. of Phys, 33, 167 (2003). B. Reznik, J. Silman, A. Retzker, Phys. Rev. A 71, (2005). J. Silman, B. Reznik, Phys. Rev. A. 71, ( 2006).

Entanglement in the vacuum Tel Aviv University  Probing vacuum Entanglement  Vacuum Entanglement in field theory. Eilat, Feb 27, 2006  Vacuum entanglement in a the harmonic lattice.  Properties of entanglement  Spatial structure of entanglement in 1D and 2D lattices. A. Retzker, I. J. Cirac, B. Reznik Phys. Rev. Lett. 93, (2005)  Detection of “Vacuum” entanglement in an ion trap. A. Botero, B. Reznik, Phys. Rev. A 67, (2003). A. Botero, B. Reznik, Phys. Rev. A 70, (2004). A. Botero, B. Reznik, Phys. Lett. A 331, 39, (2004). B. Reznik, Found. of Phys, 33, 167 (2003). B. Reznik, J. Silman, A. Retzker, Phys. Rev. A 71, (2005). J. Silman, B. Reznik, Phys. Rev. A. 71, ( 2006).

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 A B Are Bell’s inequalities violated? Can we detect it? Are A and B entangled? Yes, for arbitrary separation. ("Atom probes”). Yes, for arbitrary separation. Entanglement Swapping. (Linear Ion trap).

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 A pair of causally disconnected localized detectors RQFT! Causal structure A B L> cT

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 Causal Structure + LO Local operations: For L>cT, we have [  A,  B ]=0 Therefore U INT =U A ­ U B  E Total =0, we can have:  E AB >0. (Ent. Swapping) Detectors’ ent.  Vacuum ent. Lower bound.

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 Note: we do not use the rotating wave approximation. Field – Detectors Interaction Window Function Interaction: H INT =H A +H B H A =  A (t)(e +i  t  A + +e -i  t  A - )  (x A,t) Initial state: |  (0) i =|+ A i |+ B i|VACi Two-level system Unruh (76), B. Dewitt (76), particle-detector models.

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 Probe Entanglement Calculate to the second order (in  the final state, and evaluate the reduced density matrix. Finally, we use Peres’s (96) partial transposition criterion to check inseparability and use the Negativity as a measure. ?  AB (4£ 4) = Tr F  (4£1)  i p i  A (2£2) ­  B (2£2)

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 ** ++ *+ +*

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 Emission < Exchange Off resonance Vacuum “window function” The inequality can be satisfied for every finite L and T. Lower bound : negativity decays like e -L 2 /T 2.

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 Violation of Bell’s Inequalities No violation of Bell’s inequalities. But, by applying local filters: Maximal Ent. Maximal violation   N (  ) M (  ) |++i + h X AB |VACi |** i “+”… !   |+i|+i + h X AB |VACi|*i|*i “+”… CHSH ineq. Violated iff M (  )>1, (Horokecki (95).) “Hidden” non-locality. Popescu (95). Gisin (96). Negativity Filtered

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 Multi-Partite entanglement A B C J. Silman, B. Reznik, Phys. Rev. A. 71, ( 2006). The same method can be used to study Entanglement between N regions. 000  W =(|001i+|010i+|100i)/3 1/2 Is there genuine 3-party nonlocality? For N=3, the correlations violate the Sveltichny inequalites. ( a hybrid local-nonlocal hidden-variable model). G. Svetlichny, Phys. Rev. D 35, 3066 (1987).

Vacuum Entanglement in Field Theory Tel Aviv University Eilat, Feb 27, 2006 Summary (1)  Entanglement can be extracted from arbitrary separated regions in vacuum.  Lower bound : decays like e -(L/T) 2 (possibly e -L/T )  Bell inequalities violation for arbitrary separation: “hidden” non-locality.

Entanglement in the vacuum Tel Aviv University  Probing vacuum Entanglement  Vacuum Entanglement in field theory. Eilat, Feb 27, 2006  Vacuum entanglement in a the harmonic lattice.  Properties of entanglement  Spatial structure of entanglement in 1D and 2D lattices. A. Retzker, I. J. Cirac, B. Reznik Phys. Rev. Lett. 93, (2005)  Detection of “Vacuum” entanglement in an ion trap. A. Botero, B. Reznik, Phys. Rev. A 67, (2003). A. Botero, B. Reznik, Phys. Rev. A 70, (2004). A. Botero, B. Reznik, Phys. Lett. A 331, 39, (2004). B. Reznik, Found. of Phys, 33, 167 (2003). B. Reznik, J. Silman, A. Retzker, Phys. Rev. A 71, (2005). J. Silman, B. Reznik, Phys. Rev. A. 71, ( 2006).

Vacuum Entanglement in Harmonic lattices Tel Aviv University Eilat, Feb 27, 2006 H field =s  2 + r  2 +m 2  2 H lattice =  h i,ji p i 2 +q i 2 -  q i q j  ground-state / e - q T G q /4 Gaussian ground state: Single dimensionless parameter: 0<  <1

Vacuum Entanglement in Harmonic lattices Tel Aviv University Eilat, Feb 27, 2006 How to calculate entanglement of Gaussian states  The wave function can be fully described by second moments q-q and p-p and q-p correlations  the covariance matrix M 2N £ 2N. E=  ( +1/2)log( +1/2) – ( -1/2)log( -1/2)  For mixed state entanglement, Peres criteria means p  -p and <1/2 R. Simon, Phys. Rev. Lett. 84, 2726 (2000).  To calculate the von-Neumann entropy we obtain the Symplectic Spectrum, bring M to a diagonal form, then :  To calculate a reduced density matrix, we just take the relevant sub-block! See also talks by Klaus Moelmer and Sam Braunstein

Vacuum Entanglement in Harmonic lattices Tel Aviv University Eilat, Feb 27, 2006 Two complementary regions Pure state entanglement E' 1/3 lnN Callan & Wilczek Conformal field theory. Vidal et. al. PRL, critical Spin chains. Botero, Reznik, PRA 2004, -- critical Harmonics chain. Universality! 1/3 =(c+ c)/6, c=1, bosonic 1D CFT c=1/2 fermionic 1D CFT

Vacuum Entanglement in Harmonic lattices Tel Aviv University Eilat, Feb 27, 2006 Harmonic 1D chain Entangled (non-vanishing negativity)

Vacuum Entanglement in Harmonic lattices Tel Aviv University Eilat, Feb 27, 2006 Two oscillators Entangled

Vacuum Entanglement in Harmonic lattices Tel Aviv University Eilat, Feb 27, 2006 Two oscillators Not Entangled Even for a critical model! (Joe Eberly: “Entanglement sudden Death” in space)  Correlations between two sites decay with the distance.  Entanglement vanishes for separation of few sites! Osterloh et. al. Nature, (spin chains)

Vacuum Entanglement in Harmonic lattices Tel Aviv University Eilat, Feb 27, 2006 Maximal separation increases with the number of oscillators in the block For N!1, ent¼ exp(-L/D) AB A. Retzker, B. Reznik, work in progress. (Slightly slower decay compared with the lower bound obtained by using detector probes in the vacuum. ) Two blocks

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, 2006  Modewise decomposition  Participation function  Some examples in 1D and 2D. How can we understand the persistence of entanglement in the continuum? “Where” does entanglement come from?

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, 2006 Mode-Wise decomposition theorem Botero, Reznik (bosonic modes) Botero, Reznik (fermionic modes) AB AB  AB =  11  22 …  kk  0,..  kk /  e -  k n |ni|ni Two modes squeezed state E Total =  k E k qipiqipi QiPiQiPi  AB =  c i |A i i|B i i Schmidt decompositionMode-Wise decomposition Local U Entanglement is always 1£1 !

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, 2006 Participation function q i ! Q m =  u i q i p i ! P m =  v i p i Quantifies the local contribution of q i, p i to the collective coordinates Q i,P i Invariant under local rescaling. localcollective Participation function: P i =u i v i,  P i =1

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, 2006 Participation Function: circular 1D chain Weak coupling Strong coupling N=32+48 osc. Modes are ordered in decreasing Ent. Contribution, from front to back.

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, 2006 Mode Shapes strongWeak coupling Outer modes Inner modes  continuum Solid – u Dashed -v

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, D Harmonic lattice Entanglement / Area Entanglement arises from surface modes

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, D Harmonic lattice Mode number First surface mode Entanglement / Area Entanglement arises from surface modes E

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, 2006 Mode shapes: 2D Lattice Mode Number 1

Spatial structure of entanglement Tel Aviv University Eilat, Feb 27, 2006 Mode shapes: 2D Lattice

Entanglement in Harmonic lattices Tel Aviv University Eilat, Feb 27, 2006  Entanglement truncates to zero after a finite separation. In the continuum limit it decays exponentially rather then as a power law, even at criticality.  Mode shape hierarchy with distinctive layered structure, with exponential decreasing contribution of the innermost modes. (linked with the area law).  This is possibly related with the effect of Localization of the inner modes. Summary (2)

Can we detect Vacuum Entanglement?

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 Linear Ion Trap Paul Trap A B Ions internal levels H 0 =  z (  z A +  z B )+  n a n y a n H int =  (t)(e -i   + (k) +e i   - (k) )x k H=H 0 +H int A. Retzker, J. I. Cirac, B. Reznik, PRL, /  z << T<<1/ 0

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 Entanglement between symmetric groups of ions as a function of the total number (left) and separation of finite groups (right). One block Two ions

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 Approximate Causal Structure U AB =U A ­ U B + O([x A (0),x B (T)])  Classical Quantum

Two trapped ions

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 The entanglement is e-bits is a unit vector in the x-y plane The available operations: population of first two levels is 99%

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 External degrees of freedom Internal degrees of freedom Swap external to internal levels

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 To realize the p coupling we use two kicks in opposite directions: Swap operation

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 Final two ions internal state Final internal state E formation (  final ) accounts for 97% of the calculated Entangtlement: E(|vac>)=0.136 e-bits. “Swapping” spatial internal states U=(e i  x  x ­ e i  p  y )­...

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 A How do we check that ent. is not due to “non-local” interaction? B Entanglement between two regions H truncated = H A + H B We compare the cases with a truncated and free Hamiltonians H AB vs.

Detection of vacuum entanglement Tel Aviv University Eilat, Feb 27, 2006 L=6,15, N=20 L=10,11 N=20  denotes the detuning, L the locations of A and B.  =exchange/emission >1, signifies entanglement.

Summary Tel Aviv University Eilat, Feb 27, 2006 Atom Probes: Vacuum Entanglement can extracted to local probes. Entanglement reduces exponentially with the separation. Bell’s inequalities are violated (“hidden” non-locality). Harmonic Chain: Persistence of entanglement for large separation is possibly linked with localization of the interior modes and a “shielding” effect. Linear ion trap: A proof of principle of the general idea is experimentally feasible. Entangling internal levels of two ions without performing gates.