Микроскопы.

Slides:



Advertisements
Similar presentations
Выпускная квалификационная работа на тему: «Применение интернет-технологий как фактор повышения эффективности функционирования организации (на примере.
Advertisements

Инфракрасная спектроскопия
ЗАРЯДКА НА АНГЛИЙСКОМ ЯЗЫКЕ.  Зарядка на уроке английского языка может стать самым любимым и веселым занятием для детей, при том, что она проходит исключительно.
Введение в органическую химию
Астрометрические каталоги К.В.Куимов, ГАИШ МГУ. Определение астрометрического каталога Астрометрический каталог – понятие неопределённое. Например, это.
« Использование двоичной системы счисления при составлении генеалогического дерева». Автор: Вербицкий Евгений Ученик МОУ «Лицей» 7 г класса.
Процесс дублирования. Цели Проект профессиональных технических знаний Возможность опознать проблемы Возможность сделать правильные рекомендации.
1. ИССЛЕДОВАНИЯ РЕЗОНАНСНОГО РАССЕЯНИЯ НЕЙТРОНОВ ЯДРАМИ В ОБРАТНОЙ ГЕОМЕТРИИ. 2. ИЗМЕРЕНИЕ ДЛИНЫ n-n-РАССЕЯНИЯ. 3. ИЗМЕРЕНИЕ ГРАВИТАЦИОННОЙ МАССЫ НЕЙТРОНА.
по следам популяции серых китов
Системы с наследованием. Если систему можно представить в виде : Где - непрерывные функции, то такая система называется системой с наследованием. Математическое.
Расторгуев А.C., 545 группа Научный руководитель: Пименов А.А. Рецензент: ст. преп. Смирнова Е.А.
Моделирование распространения магнитогидродинамических корональных волн Афанасьев А.Н., Уралов А.М., Гречнев В.В. Институт солнечно-земной физики, Иркутск.
Системы отбора. Условные обозначения (1) (2) (3) (4) (5) (6) (7) Математическое моделирование процессов отбора2.
УЧЕНИК 6Б КЛАССА МОУ ШКОЛЫ №13 ЯНЦЕН АЛЕКСЕЙ САМАРА 2011 «Электричество и растения».
Углерод и его соединения Презентация выполнена учителем химии МОУ СОШ №3 г. Вольска Саратовской области Горшениной Натальей Александровной.
ООО «Баркод Маркет».  Инвентаризация имущества – программная система, позволяющая организовать учет любого имущества компании.  Уменьшение неконтролируемых.
Грековой Марии. Играет важную роль в формулировке современных теорий. Некоторые симметрии в современной физике считаются точными, другие — лишь приближёнными.
Веремьёва Е. И.. Радиобиология — это самостоятельная комплексная, фундаментальная наука, состоящая из многих научных направлений, изучающая действие ионизирующих.
Эволюционно-адаптивные эффекты инсоляции (региональные аспекты) Томск, 2011 НИИ фармакологии СО РАМН ИСЭ СО РАН.
R1R2R3R4R5R6R7R1R2R3R4R5R6R7. Аксиома R 1. В пространстве существуют плоскости. В каждой плоскости пространства выполняются все аксиомы планиметрии.
Астащенко Александр, 445 группа Научный руководитель: В.Г.Шистеров.
Дипломная работа Афанасьева Андрея Анатольевича Научный руководитель: к.ф.-м.н., доцент Широков Евгений Вадимович Акустические методы регистрации нейтрино.
Некомпенсаторное агрегирование и рейтингование студентов Авторы: Гончаров Алексей Александрович, Чистяков Вячеслав Васильевич. НФ ГУ ВШЭ 2010 год.
ПРИНЦИПЫ РАЗРАБОТКИ СИСТЕМЫ КЛАССА LEARNING MANAGEMENT SYSTEM И ОПЫТ ЕЕ ИСПОЛЬЗОВАНИЯ НА ФАКУЛЬТЕТЕ МЕНЕДЖМЕНТА Афанасьева С.В. Кафедра бизнес-информатики.
«О формировании инвестиционных площадок на территории Республики Бурятия» Директор НО «Фонд поддержки малого предпринимательства Республики Бурятия» М.М.
Подготовил: Евгений Дзень
Определение необходимого уровня запасов на складе.
Сохранение суммы фазовых координат. Важный частный случай представляют системы, в которых в течение всего процесса сохраняется постоянной сумма значений.
Глаз как оптический аппарат.
Российский государственный педагогический университет им. А.И. Герцена ИНСТИТУТ ДОВУЗОВСКОЙ ПОДГОТОВКИ Дистанционное обучение «Русский язык. Подготовка.
Виртуальная лаборатория для первоначального обучения проектированию программ Н. Н. Красильников, В. Г. Парфенов, Ф. Н. Царев, А. А. Шалыто Кафедра компьютерных.
Обзор последних достижений биометрических методов аутентификации РусКрипто 2005.
UNIVERS software presentation Oct Пакет ЮНИВЕРС UNIVERS software Области применения: Привязочное ВСП Привязочное ВСП Обработка ВСП и НВСП Обработка.
Блок 3. Семейства белков I. Множественное выравнивание Первый курс, весна 2008, А.Б.Рахманинова.
Разработка программного обеспечения (Software Engineering) Часть 2. Создание ПО.
Ответы на вопросы 7 июля « Подготовка паспортов безопасности» тел: (495) Экологический Синтезирующий.
1 Генерация контекстных ограничений для баз данных Выполнил: Жолудев В. Научный руководитель: Терехов А.Н. Рецензент: Иванов А.Н.
Понятие риска применительно к инвестиционным проектам
Магистерская программа двойных дипломов. Эта программа даёт вам возможность получить два диплома учебных заведений Великобритании и России: Диплом магистра.
Сравнение различных методов хранения XML в реляционных базах данных и в разных системах. Нгуен Тхань Хуен- 545 группа Руководитель : Б.А. Новиков Рецензент:
Ось типа РУ1 Ось типа РУ1Ш.
Математика, 5 класс Натуральные числа
Автор: Новитская О.В.. Об авторе: Н Новитская Ольга Владимировна Студентка Кемеровского Государственного Университета физического факультета 4 курса группы.
Применение оптических волоконных световодов для сверхплотной и сверхбыстрой передачи информации Системы электронной связи Системы волоконно-оптической.
Тема: «Определение предмета биофизики»
Реализация XPath над S-выражениями 2007 Миленин Евгений, гр. 544 Кафедра Системного Программирования Математико-Механический ф-т, СПбГУ Научный руководитель:
Методы определения параметров вращения Земли
Некоторые особенности преаналитического этапа измерения концентрации каталитической активности ферментов Т.И.Лукичёва, В.В.Меньшиков, Е.А.Кондрашева.
Маршрут, цепь, цикл Маршрутом называют последовательность вершин и ребер, в которой любые два соседних элемента инцидентны (т.е. соединены). Например:
BioUML интегрированная расширяемая среда для моделирования биологических систем Biosoft.Ru Лабоработория Биоинформатики КТИ ВТ СО РАН
Формы в HTML. Элемент FORM Элемент уровня «блок» Управляющие элементы Просто текст Атрибуты: action – url обработчика method – post или get enctype –
Демидов А.В г. Операционные системы Лекция 4 Работа с файлами.
Геоинформационные системы Чернышов Алексей Акимович.
Методы интерактивной визуализации динамики жидких и газообразных сред Костикова Елена Юрьевна, 521 гр. Научный руководитель: Игнатенко Алексей Викторович.
Урок 1. Цветовые модели Нижегородский государственный университет им. Н.И. Лобачевского Факультет вычислительной математики и кибернетики Кафедра интеллектуальных.
Динамическая модель взаимодействия аминокислотных остатков с границей раздела фаз МГУ им. М.В. Ломоносова Физический Факультет кафедра физики полимеров.
9 октября 2004 Поиск статических изображений по содержанию: использование текстового запроса Наталья Васильева
Харина Ю.В., учитель географии МБОУ Быструхинская СОШ.
Ученическая фирма- одна из возможностей самореализации гимназистов в современной Эстонии Автор работы Кайти Выруская Кесклиннаская гимназия 11.а класс.
TMG Tel: 8 (495) Fax: 8 (477) Technology Management Group ООО «TMG» PayKeeper.
Классификация, кластеризация и поиск изображений на основе низкоуровневых характеристик Наталья Васильева Руководитель: Новиков Б. А.
Обработка исключений в C# Единая техника обнаружения ошибок времени выполнения и передачи информации о них.
R E F R I G E R A T I O N A N D A I R C O N D I T I O N I N G Блок мониторинга и централизованного управления АK-SM 350.
Эффективность проведения мультимедийных уроков биологии, физики, химии, географии.
Выполнил студент П.А. Македонов Руководитель А.Ф. Усов Дипломная работа Тема: Разработка макетного образца генератора высоковольтных импульсов по схеме.
Национальная нанотехнологическая лаборатория открытого типа Микроскопия и анализ.
1 Лекция 4. Электронные ускорители для пучково- плазменных технологий. Часть 3 Генераторы низкоэнергетичных сильноточных электронных пучков Установки.
1 Липиды и мембраны. 2 Общие сведения Липиды (от греческого слова «липос» — жир) — низкомолекулярные органические вещества, которые извлекаются из клеток.
Шушковская Александра Ивановна учитель начальных классов ГБОУ СОШ№ апреля 2015 г.
Presentation transcript:

Микроскопы

Лупа Лупа – оптическая система, состоящая из линзы или нескольких линз, предназначенная для наблюдения предметов, расположенных на конечном расстоянии F

Видимое увеличение лупы Видимое увеличение лупы – отношение тангенса угла, под которым виден предмет через лупу, к тангенсу угла, под которым наблюдается предмет невооруженным глазом с расстояния наилучшего видения  250 мм f   F наблюдение невооруженным глазом наблюдение через лупу

Диаметр выходного зрачка лупы Апертурной диафрагмой и одновременно выходным зрачком системы «лупа-глаз» является зрачок глаза:

Поле зрения лупы Размер поля в пространстве изображений:  S   f = f  Размер поля в пространстве изображений: – диаметр лупы – диаметр зрачка глаза Размер поля в пространстве предметов:

Примеры луп Модель Увеличение, крат Диаметр (мм) Габариты (мм) Вес (г) Материал линзы Корпус ЛПК 471 2,1 78 113x95x20 127 Стекло Пластик ЛП 3 (90) 3 88 195x95x20 150 ЛТ 1-7* 7 16 36x21x14 20 Металл / Пластик ЛЧ-5 5 17 30x38 9 ЛЧ-10 10 50x38 15 ЛБН-2,5* (стерео) 2,5 56x188x240 145 Горизонт 4* 4 30 70х50х50 190 Горизонт 8* 8 53х47 110 Горизонт 10* 18 44х49 112 Лупа 6х30 двойная 6/3 36x58

Микроскоп F об окуляр Fм  Fок объектив

Увеличение микроскопа Линейное увеличение микрообъектива: где – фокусное расстояние микрообъектива, – оптическая длина тубуса (расстояние между задним фокусом объектива и передним фокусом окуляра) Видимое увеличение окуляра:

Увеличение микроскопа Общее увеличение микроскопа: где – фокусное расстояние микроскопа стандартные увеличения объективов: 3.5, 8, 10, 20, 40, 60, 90 крат стандартные увеличения окуляров: 5, 7, 10, 15, 20 крат

Поле зрения микроскопа где – угловое поля окуляра

Диаметр выходного зрачка микроскопа где A – передняя апертура микроскопа

Разрешающая способность микроскопа Линейный предел разрешения микроскопа – это минимальное расстояние между точками предмета, которые изображаются как раздельные: Предельно достижимая разрешающая способность оптического микроскопа: максимально возможное значение синуса угла Иллюстрация разрешающей способности

Повышение разрешающей способности микроскопа Иммерсия Иммерсионная жидкость – прозрачное вещество с показателем преломления больше единицы: вода (n=1.33), кедровое масло (n=1.52), раствор глицерина и т.д. Апертура иммерсионного объектива A=1.5 Предельно достижимая разрешающая способность иммерсионного оптического микроскопа: Иллюстрация иммерсии

Повышение разрешающей способности микроскопа Применение ультрафиолетовых лучей Длина волны ультрафиолетовых лучей =0.2 мкм Предельно достижимая разрешающая способность микроскопа:

Полезное увеличение микроскопа Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза

Полезное увеличение микроскопа Угловое расстояние между изображениями двух точек, расположенных на расстоянии  : Видимое увеличение микроскопа: Для гл=2-4, и =0.5 мкм: если Г < 500A : если Г >1000A:

Методы наблюдения Метод светлого поля Метод темного поля в проходящем свете – для исследования прозрачных препаратов (тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов) в отраженном свете – для наблюдения непрозрачных объектов (травленые шлифы металлов, биологические ткани, минералы) Метод темного поля в проходящем свете – для исследования прозрачных и непоглощающих объектов (применяется в биологии, коллоидной химии, минералогии) в отраженном свете

изображение в светлом поле и фазовом контрасте Методы наблюдения Метод исследования в поляризованных лучах применяется в проходящем и в отраженном свете для анизотропных объектов (минералы, угли, некоторые животные и растительные ткани и клетки, искусственные и естественные волокна) Пример Метод фазового контраста для прозрачных и бесцветных объектов (неокрашенные биологические препараты, нетравленые шлифы металлов и минералогические объекты) изображение в светлом поле и фазовом контрасте

Типы микроскопов Световые микроскопы Электронные микроскопы Сканирующие микроскопы

Световые микроскопы Биологические микроскопы (серии MULTISCOPE™, LABOROSCOPE™, INVERTOSCOPE™) имеют несколько сменных объективов и окуляров, фотоокуляры и проекционные окуляры различные методы наблюдения: светлое поле, темное поле, метод фазового контраста Микроскопы сравнения обеспечивают визуальное сопоставление двух препаратов (изображение каждого занимает половину поля зрения) Контактные микроскопы (серия METAM™) прижимают объектив к объекту исследования используется для наблюдения микроструктур металлов и т.д.

Световые микроскопы Стереомикроскопы (серии SF™ и MX™) создается стереоскопический эффект, и изображение воспринимается объемно Ультрафиолетовый и инфракрасный микроскопы для исследования объектов в ультрафиолетовом или инфракрасном излучении снабжены флуоресцентным экраном, фотокамерой или электронно-оптическим преобразователем Поляризационный микроскоп (серия POLAM™) позволяет выявлять анизотропию структуры при в поляризованном свете используют при изучении препаратов крови, шлифов зубов, костей и т.п.

Световые микроскопы Люминесцентный микроскоп (серия LUMAM™) под действием УФ излучения возникает люминесценция некоторых объектов используется в микробиологии и иммунологических исследованиях Сравнение люминесцентного и фазово-контрастного методов Интерференционный микроскоп часть света проходит через исследуемый объект, а другая – мимо, в окулярной части лучи соединяются и интерферируют дает возможность исследовать объекты с низкими показателями преломления света и малой толщины Операционный микроскоп (серии MIKO™, MX™) используется для проведения микрохирургических операций в офтальмологии, нейрохирургии и др. имеет демонстрационное визуальное устройство, фотоприставку

Сканирующие микроскопы Устройство сканирующего микроскопа: принцип действия основан на сканировании объекта сверхмалым зондом. Прошедший или отраженный сигнал регистрируется и используется для формирования трехмерной топографии поверхности образца с помощью ЭВМ в зависимости от принципа взаимодействия зонда и образца разделяют на электронные, атомно-силовые и ближнепольные

Ближнепольный растровый сканирующий микроскоп Работает в видимом излучении, позволяет работать с биологическими и медицинскими препаратами в естественных условиях Принцип действия: сканирование объекта оптическим зондом на расстоянии меньше длины волны от объекта (в ближнем поле) роль светового зонда выполняют светоизлучающие острия с выходными отверстиями, радиус которых в 10-20 раз меньше длины волны света <<

Электронные микроскопы Устройство электронного микроскопа: вместо видимого света используется пучок электронов роль линз играет совокупность электрических и магнитных полей изображение фотографируется, или проецируется на экран контраст создается за счет разного рассеяния электронов от соседних участков Предел разрешения электронного микроскопа: =0.005 нм, A=0.01: Недостатки электронного микроскопа: невозможность изучения живых биологических объектов Примеры изображений

Интернет-ресурсы http://www.lomo.ru Сайт ОАО "ЛОМО". На сайте содержится информация о фирме и описание производимых приборов. http://micro.magnet.fsu.edu/optics/index.html представлена история развития оптики, микроскопии и астрономии, обучающие программы моделируют работу микроскопов различных типов и различных методов наблюдения. На английском языке. http://www.microscopyu.com/ Сайт содержит подробное описание, наглядные иллюстрация, фотографии и интерактивные обучающие программы, посвященные микроскопам. На английском языке. http://www.infectology.spb.ru/microscopy/ Раздел «Микроскоп от А до Я» в журнале «Вестник инфектологии и паразитологии». Размещена информация о применении микроскопов в медицине, полезные советы по работе с современными микроскопами, информация о фирмах – производителях микроскопов.