Allantois / placenta
Figure 2.22 The Amniote Chick Egg, Showing the Membranes Enfolding the 7-Day Embryo Chick Embryo
Human Embryo
NOW- Signaling in patterning in other systems VERTEBRATE…+
Figure 10.22(1) Summary of Experiments by Nieuwkoop and by Nakamura and Takasaki, Showing Mesodermal Induction by Vegetal Endoderm
Figure The Regional Specificity of Mesoderm Iinduction Can Be Demonstrated by Recombining Blastomeres of 32-Cell Xenopus Embryos
Figure 10.22(2) Summary of Experiments by Nieuwkoop and by Nakamura and Takasaki, Showing Mesodermal Induction by Vegetal Endoderm
Figure The Role of Wnt Pathway Proteins in Dorsal-Ventral Axis Specification Inject Dominant Inactive GSK-3
No Active No
Figure 10.25(1) Model of the Mechanism by which the Disheveled Protein Stabilizes b-catenin in the Dorsal Portion of the Amphibian Egg
Figure 10.25(2) Model of the Mechanism by which the Disheveled Protein Stabilizes b-catenin in the Dorsal Portion of the Amphibian Egg
No Active No Beta-catenin signal on dorsal, not ventral side of embryo
Figure Three Modifications of the Wnt Pathway
Overlap of TGF-beta signal and Beta-catenin signal specifies Nieuwkoop center
Figure Events Hypothesized to Bring about the Induction of the Organizer in the Dorsal Mesoderm In organizer
Figure Mesoderm Induction and Organizer Formation by the Interaction of b-catenin And TGF-b Proteins
The Organizer:
Figure 4.16(1) Microarray Analysis of Those Genes Whose Expression in the Early Xenopus Embryo Is Caused by the Activin-Like Protein Nodal-Related 1 (Xnr1)
Figure 4.16(2) Microarray Analysis of Those Genes Whose Expression in the Early Xenopus Embryo Is Caused by the Activin-Like Protein Nodal-Related 1 (Xnr1)
Figure Ability of goosecoid mRNA to Induce a New Axis
Figure Localization of Noggin mRNA in the Organizer Tissue, Shown by In Situ Hybridization Noggin is secreted protein, interacts with BMPs
Figure Rescue of Dorsal Structures by Noggin Protein
Figure Localization of Chordin mRNA Chordin protein also interacts with BMPs
Figure Cerberus mRNA injected into a Single D4 Blastomere of a 32-Cell Xenopus Embryo Induces Head Structures as Well as a Duplicated Heart and Liver Cerebrus also interacts with BMPs
Figure Model for the Action of the Organizer
Figure Homologous Pathways Specifying Neural Ectoderm in Protostomes (Drosophila) and Deuterostomes (Xenopus)
Figure Paracrine Factors From the Organizer are Able to Block Certain Other Paracrine Factors
Figure Xwnt8 Is Capable of Ventralizing the Mesoderm and Preventing Anterior Head Formation in the Ectoderm
Figure Frzb Expression and Function
Figure Ectodermal Bias Toward Neurulation
Figure Regional Specificity of Induction can be Demonstrated by Implanting Different Regions (Color) of the Archenteron Roof into Early Triturus Gastrulae
Figure Regionally Specific Inducing Action of the Dorsal Blastopore Lip
Figure 10.42(3) The Wnt Signaling Pathway and Posteriorization of the Neural Tube
Figure Organizer Function and Axis Specification in the Xenopus Gastrula
Beta-catenin NON-FROG
Figure 8.11 Ability of the Micromeres to Induce Presumptive Ectodermal Cells to Acquire Other Fates
Figure 8.12(1) The Role of b-catenin in Specifying the Vegetal Cells of the Sea Urchin Embryo
Figure 8.12(2) The Role of b-catenin in Specifying the Vegetal Cells of the Sea Urchin Embryo
Figure 8.12(3) The Role of b-catenin in Specifying the Vegetal Cells of the Sea Urchin Embryo
Figure 8.13 The Micromere Regulatory Network Proposed by Davidson and Colleagues (2002)
Figure 8.14(1) A Model of Endoderm Specification
Figure 8.14(2) A Model of Endoderm Specification
Figure 8.14(3) A Model of Endoderm Specification
Figure 11.9 Axis formation in the Zebrafish Embryo
Figure 11.8 The Embryonic Shield as Organizer in the Fish Embryo Sonic Hedgehog In ventral midline
Figure B-Catenin Activates Organizer Genes in the Zebrafish
Figure Formation of the Nieuwkoop Center in Frogs And Chicks
Figure Formation of Hensen’s Node From Koller’s Sickle
Figure 8.39 Autonomous Specification by a Morphogenetic Factor
Figure 8.40 Antibody Staining of b-catenin Protein Shows Its Involvement with Endoderm Formation
Figure 4.17 In Situ Hybridization Showing the Expression of the Pax6 Gene in the Developing Mouse Eye EYE
Figure 4.17 In Situ Hybridization Showing the Expression of the Pax6 Gene in the Developing Mouse Eye
Figure 4.18(1) Whole-Mount In Situ Hybridization Localizing Pax6 mRNA in Early Chick Embryos
Figure 4.18(2) Whole-Mount In Situ Hybridization Localizing Pax6 mRNA in Early Chick Embryos
Figure 5.7 Regulatory Regions of the Mouse Pax6 Gene
Figure 5.15 The Enhancer Trap Technique
Figure 5.16 Targeted Expression of the Pax6 Gene in a Drosophila Non-eye Imaginal Disc
Figure 6.1 Ectodermal Competence and the Ability to Respond to the Optic Vesicle Inducer in Xenopus
Figure 6.2 Induction of Optic and Nasal Structures by Pax6 in the Rat Embryo
Figure 6.3 Recombination Experiments with Pax6-Deficient Rats
Figure 6.4(1) Lens Induction in Amphibians
Figure 6.4(2) Lens Induction in Amphibians
Figure 6.4(3) Lens Induction in Amphibians
Figure 6.5(3) Schematic Diagram of the Induction of the Mouse Lens