1/17 A Study on Separation between Acoustic Models and Its Application Author : Yu Tsao, Jinyu Li, Chin-Hui Lee Professor : 陳嘉平 Reporter : 許峰閤.

Slides:



Advertisements
Similar presentations
Divide-and-Conquer. 什麼是 divide-and-conquer ? Divide 就是把問題分割 Conquer 則是把答案結合起來.
Advertisements

McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
3Com Switch 4500 切VLAN教學.
演化式演算法在電腦視覺之應用 Seminar報告
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Lecture 8 Median and Order Statistics. Median and Order Statistics2 Order Statistics 問題敘述 在 n 個元素中,找出其中第 i 小的元素。 i = 1 ,即為找最小值。 i = n ,即為找最大值。 i = 或 ,即為找中位數。
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
1 實驗二 : SIP User Mobility 實驗目的 藉由 Registra 和 Redirect Server 的設計,深入瞭解 SIP 的運 作及訊息格式。 實作部分 ( 1 )實作一個 Registrar 來接收 SIP REGISTER ,而且 要將 REGISTER 中 Contact.
:New Land ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11871: New Land 解題者:施博修 解題日期: 2011 年 6 月 8 日 題意:國王有一個懶兒子,為了勞動兒子,他想了一個 辦法,令他在某天早上開始走路,直到太陽下山前,靠.
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
1. 假設以下的敘述為一未提供 “ 捷徑計算 ” 能力的程式段,試用程 式設計的技巧,使此敘述經此改 寫的動作後,具有與 “ 捷徑計算 ” 之 處理方法相同之處理模式。 if and then E1 else E2 endif.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
JAVA 程式設計與資料結構 第十章 GUI Introdution III. File Chooser  File Chooser 是一個選擇檔案的圖形介面, 無論我們是要存檔還是要開啟檔案,使 用這個物件都會讓我們覺得容易且舒適。
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
第 1 章 PC 的基本構造. 本章提要 PC 系統簡介 80x86 系列 CPU 及其暫存器群 記憶體: Memory 80x86 的分節式記憶體管理 80x86 的 I/O 結構 學習組合語言的基本工具.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 貳 研究設計.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
24-6 設定開始與結束場景中的 程式 最後我們要替這個遊戲收個尾, 幫它把開始 的等待畫面跟結束畫面處理一下。
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
Chapter 20 塑模動態觀點:狀態圖 Statechart Diagram. 學習目標  說明狀態圖的目的  定義狀態圖的基本記號  展示狀態圖的建構  定義活動、內部事件及遞延事件的狀態 圖記號.
第二章 供給與需求 中興大學會計學系 授課老師:簡立賢.
選舉制度、政府結構與政 黨體系 Cox (1997) Electoral institutions, cleavage strucuters, and the number of parties.
第三章 自動再裝載運用篇 使用時機:裝載計劃完成時,尚有剩餘空 間的情形,維持已固定計劃而繼續做裝載 最佳化。以支持次日裝載計劃而提前調整 作業模式。 裝載物品設定和裝載容器設定如前兩章介 紹,於此不再重複此動作,直接從裝載計 劃設定開始,直接從系統內定的物品和容 器選取所需.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
公司加入市場的決定. 定義  平均成本 = 總成本 ÷ 生產數量 = 每一單位產量所耗的成本  平均固定成本 = 總固定成本 ÷ 生產數量  平均變動成本 = 總變動成本 ÷ 生產數量.
: Placing Lampposts ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10859: Placing Lampposts 解題者:陳志瑜 解題日期: 2011 年 5 月 10 日 題意:美化為 Dhaka City.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
資料結構實習-一 參數傳遞.
6-2 認識元件庫與內建元件庫 Flash 的元件庫分兩種, 一種是每個動畫專 屬的元件庫 (Library) ;另一種則是內建元 件庫 (Common Libraries), 兩者皆可透過 『視窗』功能表來開啟, 以下即為您說明。
Lecture 7 Sorting in Linear Time. Sorting in Linear Time2 7.1 Lower bounds for sorting 本節探討排序所耗用的時間複雜度下限。 任何一個以比較為基礎排序的演算法,排序 n 個元 素時至少耗用 Ω(nlogn) 次比較。
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
Image Interpolation Use SSE 指導教授 : 楊士萱 學 生 : 楊宗峰 日 期 :
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
Learning Method in Multilingual Speech Recognition Author : Hui Lin, Li Deng, Jasha Droppo Professor: 陳嘉平 Reporter: 許峰閤.
Chapter 10 m-way 搜尋樹與B-Tree
描述統計 描述統計(Descriptive Statistics)-將蒐集到的資料加以整理和記錄,並以數字和統計圖表的方式來分析及解釋資料所具有的特性. 基本統計值(平均數,中位數,標準差,變異量….) 相關性測量(卡方,相關係數,迴歸…)
JAVA 程式設計與資料結構 第十六章 Hash Tables. Introduction Hash Tables 結構為一個 Array ,稱之為 Bucket array 。 如果想要新增一個物件,要根據這個物件的特性 將其加入 Hash Table 內。 Bucket Array 用 A 來代替,其.
概念性產品企劃書 呂學儒 李政翰.
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
連續隨機變數 連續變數:時間、分數、重量、……
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 資料蒐集的方法.
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
財務管理概論 劉亞秋‧薛立言 合著 (東華書局, 2007)
幼兒行為觀察與記錄 第八章 事件取樣法.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
第 1 章 PC 的基本構造. 本章提要 PC 系統簡介 80x86 系列 CPU 及其暫存器群 記憶體: Memory 80x86 的分節式記憶體管理 80x86 的 I/O 結構 學習組合語言的基本工具.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Presentation transcript:

1/17 A Study on Separation between Acoustic Models and Its Application Author : Yu Tsao, Jinyu Li, Chin-Hui Lee Professor : 陳嘉平 Reporter : 許峰閤

2/17 介紹 在語音辨識中, 將目標模型與競爭模型區分 開來可以有效的提升辨識率 由於模型的分離可以有效提升效能, 所以我 們可以針對模型的分離, 提出一套有效的估 算方法, 並且此方法可以不需要用到大型的 實驗方法

3/17 介紹 在這裡提出了利用 generalized log likelihood ratio (GLLR) 來估算兩模型之間 的距離

4/17 定義目標與競爭集合 首先定義兩個假說, 分別為 null hypothesis A 及 alternative hypothesis B 假說 B 通常代表競爭的類別 ( 有多個 ), 而我們 只需從假說 B 中取出幾個與假說 A 較有競爭力 的類別來考慮

5/17 計算目標及競爭的分數 LLR 用在 verification problem 中用以下定義 及 分別代表目標及 競爭者的分數 接著利用修改過的 LLR 產生 GLLR

6/17 計算目標及競爭的分數 is an norm of the scores in the cohort set with size | | of the claim target q

7/17 製作 GLLR 直方圖 首先從 target source 中取出 sample 及 non- target source 中取出 sample 來作 GLLR Type1 代表 target sample miss 的部分 Type2 代表 false alarm

8/17 製作 GLLR 直方圖

9/17 應用在模型的分離評估 GLLR 可以有效的分析目標模型與競爭模型 之間的距離, 所以往後的研究中可以使用一 些新的訓練方式或是補償來移動 GLLR histogram 中的曲線 在這邊針對幾種情形來作 GLLR 的分析, 來 證明 GLLR 可以有效的分析兩模型間的距離

10/17 實驗資料設定 語料庫使用 TIMIT 及 NTIMIT 使用 TIMIT 中的訓練資料針對音素及語音屬性來訓 練 HMM 語音屬性有五個種類 : 元音 擦音 停止音 鼻音及 近 音 (vowel, fricative, stop, nasal and approximant) 使用 13 維的 MFCC 及兩個 delta

11/17 應用在模型的分離評估 首先第一個應用在 acoustic discrimination 上, 先取 出兩個元音 /ix/ 及 /ay/, 再分別取出其最有競爭力 的五個音素分別為 {/ah/, /aa/, /ae/, /eh/, /ao/} 和 {/ih/, /ax/, /eh/, /uw/, /ch/} 作為競爭的 cohort set

12/17

13/17 針對 acoustic mismatch 一樣取出兩個 Target Phone 比較其兩個 Phone 在 match 及 mismatch 的情況下的情形 Mismatch 的情況為 TIMIT 的資料來 train, NTIMIT 來作 test

14/17 針對 acoustic mismatch

15/17 針對 training criteria 取出相同的 /vowel/ 這個 manner 的類別, 來 作 minimum classification error, 下圖可以發 現作完 MCE 後 false alarm 及 target sample miss 都有降低 所以我們可以利用 GLLR 這個估算方式來比 較各種對於 model 作完最佳化以後的改進狀 態

16/17

17/17 結論 經由 GLLR 可以用簡單的計算發現某兩模型 之間的分布情形, 所以在開發新的演算法來 最佳化模型, 或是在調整模型參數的時候, 可以不經過大型的實驗來得到結果