1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.

Slides:



Advertisements
Similar presentations
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Advertisements

Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Disk Structure and Evolution (the so-called model of disk viscosity) Ge/Ay 133.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
Magnetic Fields in T Tauri Disks A. Meredith Hughes Wesleyan University What Millimeter Polarimetry Can Tell Us Chat Hull, David Wilner, Sean Andrews,
Observing How Habitable Conditions Develop (Or Not) in Protoplanetary Disks Colette Salyk National Optical Astronomy Observatory Credit: JPL-Caltech/T.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
Evolution of Gas in Disks Joan Najita National Optical Astronomy Observatory Steve Strom John Carr Al Glassgold.
1 Concluding Panel Al Glassgold Sienny Shang Jonathan Williams David Wilner.
Disc clearing conventional view: most stars are either rich in circumstellar diagnostics, e.g. Or devoid of same: intermediate states less common ==> RAPID.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
May 24, 2005ly 26, 2004 Astrobiology, McMaster University1 Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Outflow-Envelope Interactions at the Early Stages of Star Formation Héctor G. Arce (AMNH) & Anneila I. Sargent (Caltech) Submillimeter Astronomy: in the.
L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett.
Disk evolution and Clearing P. D’Alessio (CRYA) C. Briceno (CIDA) J. Hernandez (CIDA & Michigan) L. Hartmann (Michigan) J. Muzerolle (Steward) A. Sicilia-Aguilar.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Background Last review on disk chemistry in Protostars and Planets: Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing.
Circumstellar disks - a primer
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions Kenneth Wood St Andrews.
Multiwavelength Continuum Survey of Protostellar Disks in Ophiuchus Left: Submillimeter Array (SMA) aperture synthesis images of 870 μm (350 GHz) continuum.
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
The Origin of Gaps and Holes in Transition Disks Uma Gorti (SETI Institute) Collaborators: D. Hollenbach (SETI), G. D’Angelo (SETI/NASA Ames), C.P. Dullemond.
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Peering into the Birthplaces of Solar Systems Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope.
1 Are we seen the effects of forming planets in primordial disks? Laura Ingleby, Melissa McClure, Lucia Adame, Zhaohuan Zhu, Lee Hartmann, Jeffrey Fogel,
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
Next Gen VLA Observations of Protoplanetary Disks A. Meredith Hughes Wesleyan University ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
WITNESSING PLANET FORMATION WITH ALMA AND THE ELTs GMT TMTE-ELT Lucas Cieza, IfA/U. of Hawaii ABSTRACT: Over the last 15 years, astronomers have discovered.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
Deciphering the interplay between starlight and disks: Where is the gas? Gerrit van der Plas From disks to planets: Learning from starlight, March 18 th.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
Kenneth Wood St Andrews
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
The planet-forming zones of disks around solar- mass stars: a CRIRES evolutionary study VLT Large Program 24 nights.
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
Protoplanetary disk evolution and clearing Paola D’Alessio (CRYA) J. Muzerolle (Steward) C. Briceno (CIDA) A. Sicilia-Aguilar (MPI) L. Adame (UNAM) IRS.
Evolved Protoplanetary Disks: The Multiwavelength Picture Aurora Sicilia-Aguilar Th. Henning, J. Bouwman, A. Juhász, V. Roccatagliata, C. Dullemond, L.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
Photoevaporation of Disks around Young Stars D. Hollenbach NASA Ames Research Center From Stars to Planets University of Florida April, 2007 Collaborators:
Submillimeter Observations of Debris Disks Wayne Holland UK Astronomy Technology Centre, Royal Observatory Edinburgh With Jane Greaves, Mark Wyatt, Bill.
1 ALMA View of Dust Evolution: Making Planets and Decoding Debris David J. Wilner (CfA) Grain Growth  Protoplanets  Debris.
The Submillimeter Array 1 David J. Wilner
Protoplanetary and Debris Disks A. Meredith Hughes Wesleyan University.
Grain Growth and Substructure in Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics S. Corder (NRAO) A. Deller.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
ALMA User Perspective: Galactic Studies
ALMA does Circumstellar Disks
Probing CO freeze-out and desorption in protoplanetary disks
Molecules: Probes of the Interstellar Medium
Some considerations on disk models
Disks Around Young Stars with ALMA & SPHEREx
Ge/Ay133 SED studies of disk “lifetimes” &
The chemistry and stability of the protoplanetary disk surface
Presentation transcript:

1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean Andrews (Hubble Fellow) Andrews et al Burrows et al. 1996

2 Circumstellar Disks integral part of star/planet formation paradigm before disks spatially resolved –inevitable consequence of gravity + ang. mom. –Solar System fossil record –preponderance of circumstantial evidence observational challenges –bulk of disk mass is cold (and dark) H 2, probed by minor constituents only –Solar System scales small, difficult to image Shu, Adams & Lizano, 1987 ARA&A 100 AU 140 pc

3 Panchromatic Systems Dullemond et al x-ray uv optical mid/far-ir submm cm hot gas/accr. starlight warm… cool gas & dust dust dominates the opacity, gas dominates the mass

4 optical shadows are beautiful but opaque  mm emission I mm  B (T)(1 - e -  )d  –1 - e -      where  dust emissivity –Rayleigh-Jeans: B (T)  T L mm  ∫  T  M d typical M d  0.01 M  (wide range exists) Disk Masses Andrews & Williams 2007 (cf. Beckwith et al. 1990) for > 300 systems in nearby Taurus and  Oph clouds

5 Disk Mass Distributions “Minimum Mass Solar Nebula” Steady Irradiated  Disk  ~ r -1.5 Weidenschilling 1977 (also Hayashi 1981) D’Alessio et al  ~ r -1.0  c s H (Shakura & Sunyaev 1973)  ~ (dM/dt)/3  (r 1.5 T) -1  r -1  (r) ~ r -p — Adams, Shu & Lada 1988

6 flux limited sample:  Oph (125 pc) and TWA (50 pc) regions 870 microns, 0.25” resolution, surface density structure to r < 20 AU Submillimeter Array Survey

7 SMA Survey (12 disks so far)  Oph TWA 100 AU

8 Surface Density Distributions fit resolved submm data and SED simultaneously –stellar properties –dust properties (uniform) –Dullemond RADMC code (temperature structure computed, not imposed)

9 Surface Density Distributions densities comparable to MMSN (extrapolation) + significant mass reservoir good potential for planet formation (e.g. Inaba et al. 2003, Hubickyj et al. 2005)  r -1 Andrews et al., in prep

10 other two  Oph disks… diminished emission inside r ~ AU growing sample of disks with large central holes Evidence for Central Holes J. Brown, Ph.D. thesis (see Pontoppidan et al. 2008) Andrews et al., in prep mechanism(s)?

11 CO: most abundant gas tracer of H 2 (e.g. Koerner et al. 1993, Mannings et al. 1997, Dutrey et al. 1997, Simon et al. 2000, …) –low J lines collisionally excited, thermalized, optically thick (T  r -0.5 ) –confusion with ambient cloud is often a major problem many other (much weaker) species (e.g. Kastner et al. 1997, Dutrey et al. 1997, van Zadelhof et al. 2003, Thi et al , …) –rich chemistry: ion-molecule, deuteration, photo-, organics –HCO +, DCO +, HCN, CN, DCN, CS, H 2 CO, CH 3 OH, … Isella et al Spectral Line Emission SMA TW Hya CO 3-2 Hughes et al., in prep (Qi et al. 2004, 2006) SMA HD CO 3-2

12 Velocity Fields Keplerian rotation –v  r -0.5 turbulence? –subsonic (if present) TW Hya SMA CO 3-2  v = 44 m/s Hughes et al., in prep

13 Nebular Chemistry D/H enhanced at low temps: H HD  H 2 D + + H 2 +  E is pristine cometary material: “interstellar” or “nebular”? TW Hya: radial distributions of DCO + and HCO + –D/H ratio  from 0.01 to 0.1 from r<30 to 90 AU – in situ fractionation is important Qi et al HCO + 3-2DCO + 3-2

14 Outer Edge Complexity power law models do not match observed extent of dust and CO emission –e.g. HD : 200 AU (dust) vs. 600 AU (CO) –not limited sensitivity –outer disk dust:gas ratio? dust opacity? accretion disk structure: exponential outer edge –reconciles dust and gas sizes with same model SMA 1.3/0.87 mm CO J=3-2 Hughes et al. 2008

15 Disk Magnetic Fields aligned dust grains  linear polarization –models: ~2% pol. fraction 870  m (Cho & Lazarian 2007) –tentative JCMT detections: toroidal field (Tamura et al. 1999) SMA polarimetry of HD –< 5x below model –magnetic field geometry? grain alignment? Hughes et al. in prep

16 Concluding Remarks observed disk properties are “protoplanetary” – dust (Spectral Energy Distributions) –gas (accretion, flaring, mm lines) –sizes 10’s - 100’s AU (dust, mm lines) –masses ~ 0.01 M  (mm dust) –   r -1 (mm dust) –holes cleared by planets? (mm dust) –kinematics Keplerian (mm lines) ALMA on the horizon: full operation 2013? –10-100x sensitivity, resolution, image quality –global partnership to fund >$1B construction –disks are a Key Science Goal

17 END

18 Evidence for Central Holes GM Aur disk: diminished opacity for R < 24 AU C. Espaillat Calvet et al Hughes et al., in prep

19 Transition Disk Models dynamical clearing by planet –planet interacts tidally with disk, transfers angular momentum, opens gap, viscosity opposes (Papaloizou & Lin 1984, …) photoevaporation –accretion rate drops below mass loss rate, open gap: “uv switch” (Clarke et al. 2001,…) demographics favor planets –large masses –modest accretion rates Najita et al. 2007

20 infrared excess 50% (90%) gone by 3 (5) Myr also gas accretion timescale 1-2 Myr T-Tauri stars L mm  ∫B(T)(1 - e -  )d  T  0.01 M  Disk Mass and Disk Dispersal Andrews & Williams 2007 (cf. Beckwith et al. 1990) Hernandez et al (cf. Haish et al. 2001)

21 Disk Evolution: Multiple Paths? B. Merin, Spitzer c2d team primordial disk “cold” disk “anemic” disk debris disk

22 At the Limits of ALMA hypothetical planet in TW Hya disk model density distribution simulated ALMA 900 GHz image Wolf & D’Angelo AU