استاد درس: آقای دکتر عبدالله زاده توسط: اسماعیل رضایی ‪

Slides:



Advertisements
Similar presentations
Awe sim.
Advertisements

معاونت درمان امور مامایی اردیبهشت 90. برای ثبت اطلاعات در برنامه نرم افزاری نظام مراقبت مرگ پریناتال ابتدا لازم است برنامه نرم افزار info-path وپرنیان.
فاکتورهای مهم در ایجاد یک مقاله علمی
NLP Project بعثت زردشت استاد راهنما : دکتر عبدالله زاده.
Professor: Dr. Ahmad Abdollahzadeh Amirkabir University of Technology, Computer Engineering and Information Technology Department Intelligent Systems Laboratory.
Decision Tree.
© 2005 Prentice Hall Inc. All rights reserved. o r g a n i z a t i o n a l b e h a v i o r e l e v e n t h e d i t i o n.
مراحل مختلف اجرای يک برنامه
فایل پردازی در C File based Programming in C. انواع فایل متنی –سرعت بالا –حجم کمتر –امکان دسترسی تصادفی –حفظ امنیت داده ها دودویی (باینری) –امکان باز.
1 Network Address Translation (NAT). 2 Private Network شبکه خصوصی شبکه ای است که بطور مستقیم به اینترنت متصل نیست در یک شبکه خصوصی آدرس های IP به دلخواه.
Lesson four Grade three
روش تحقیق جلسه چهارم دانشگاه صنعتی اصفهان دانشکده کشاورزی
1 بنام خدا زبان برنامه نویسی C (21814( Lecture 14 Structures.
Database Laboratory: Session #4 Akram Shokri. DB-Lab 2 Lab Activity You must already created all tables You have to have inserted proper data in tables.
تکنیک های پیشرفته در برنامه سازی وب ) اسلايد هفتم ) جوانمرد Website: به نام خدا.
Arrangements of Lines C omputational Geometry By Samaneh shafi naderi
Grammar lesson 4 Grade 9 Wh-Question
9ghalam.ir. Make lunch 9ghalam.ir Bake a cake 9ghalam.ir.
پیاده سازی کنترلر PC/104. Contents PC/104 پیاده سازی کنترلر HILتست 1.
[c.
Business Process Modeling
تهیه و تنظیم: فاطمه قاسمی دانشگاه صنعتی شریف – پاییز 86
مدیریت اطلاعات و داده های سازمان یافته
( Project Operation Management )
تمرین هفتم بسم الله الرحمن الرحیم درس یادگیری ماشین محمدعلی کیوان راد
هیدروگراف(Hydrograph) تهیه : دکتر محمد مهدی احمدی
ویژگی های DHCP جلوگیری از Conflict سرعت بخشیدن به کارها مدیریت متمرکز
بنام خدا زبان برنامه نویسی C (21814( Lecture 12 Selected Topics
SY800 router mode [AD-14-TB ].
آشنایی مقدماتی با نرم افزار Endnote X4
Address: Times New Roman, size 34
آزمایشگاه پایگاه داده ها قیود در جداول یک پایگاه داده در SQL Server
Odd-even merge sort مرتب سازی.
استانداردهای تصاویر دیجیتال پزشکی با فرمت دایکام DICOM در سیستم PACS
چگونه بفهمیم آیا ژورنالی ISI است؟ ایمپکت فاکتور دارد یا خیر؟
آموزش مقدمات MATLAB سیگنال ها و سیستم ها دانشگاه صنعتی شریف پائیز 86
دانشگاه علوم پزشکی شهید بهشتی
به نام خدا.
فصل دوم جبر بول.
Interlingual Machine Translation
Route configuration for 5400W ADSL Router
Natural language Understanding James Allen
مقدمه اي بر مهندسي نيازمنديها
SSO Single Sign-on Systems
آشنایی با پایگاه داده mysql
مدارهای منطقی فصل سوم - خصوصیات توابع سويیچی
ساختمان داده‌ها پیمایش درخت دودویی
بسم الله الرحمن الرحیم.
آشنایی مقدماتی با نرم افزار Endnote X4
عنوان دانشجو: نام دانشجو رشته تحصیلی: رشته تحصیلی، گرایش
ASP.NET فرناز شریعت.
فصل 4. فصل 4 جمع آوری نیازمندیها و تحلیل سیستم : فاز تولید هر نرم افزار با مرحله ای به نام تعریف مسئله شروع می شود. منظور از تعریف مسئله شناخت محیط.
Related group and college Shiraz University of Medical Sciences
راهنمای استفاده از ابزار Mailings در Ms Word
تدريس يار: ميثم نظرياني
آشنایی مقدماتی با نرم افزار Endnote X4
نام درس: طراحی و پیاده سازی زبانهای برنامه سازی
بسم الله الرحمن الرحیم هرس درخت تصمیم Dr.vahidipour Zahra bayat
آشنایی مقدماتی با نرم افزار Endnote
کاربرد کامپیوتر در داروخانه
جستجوی منابع الکترونیک
به نام خدا Koha برنامه.
سمینار SharePoint رانندگی در بزرگراه پرتال ها
فصل ششم مدارهای ترتیبی.
سخت افزارهای امنیتی Hardware Security تهیه و ارایه : یونس جوان.
به نام یکتای دانا فصل اول: متدها و قواعد.
فصل 8 –Process and Deployment
کتابخانه دانشکده پرستاری و مامایی دانشگاه علوم پزشکی شهید بهشتی
مباني كامپيوتر و برنامه سازي Basics of Computer and Programming
مباني كامپيوتر و برنامه سازي Basics of Computer and Programming
Presentation transcript:

استاد درس: آقای دکتر عبدالله زاده توسط: اسماعیل رضایی- 86131031‪ دانشگاه صنعتي امير کبير دانشکده مهندسي کامپيوتر و فناوري اطلاعات CFG,TAG,FSG پروژه درس پردازش زبان طبيعی استاد درس: آقای دکتر عبدالله زاده توسط: اسماعیل رضایی- 86131031‪

آزمایشگاه سیستم های هوشمند عناوین معرفی متن گرامر ها CFG TAG FSG برای هر یک از گرامر ها معرفی روش ساخت مثال پارسر معرفی پارسر PCRATR فراهم کردن ورودی های مورد نیاز PCPATR برای پارس متن پارس متن و دریافت خروجی ها درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند متن Clouds Clouds make the sky interesting. They help provide the beautiful sky. They warn us of approaching storms and forecast better weather ahead. Clouds bring the rain that farmers need it for their crops. clouds bring destruction and death. They cause tremendous amounts of damage with their hail and kill people caught in the funnel-shaped clouds we call tornadoes. All clouds are not alike or form at the same height above the earth’s surface. Some clouds are low and look like cotton balls, and others are very high and look like giant feathers. درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

گرامر مستقل از متن) (CFG اجزای گرامر مستقل از متن G =(T,N,S,P) 1- مجموعه ی Non Terminal ها N 2- مجموعه Terminal ها S 3- مجموعه قواعد(Production Rules) P 4 – Start Symbol S0 = S درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

گرامرمستقل از متن دولایه برای زبان طبیعی یک لایه که شامل گروه بندی Terminal ها است ،به گرامر اضافه می شود که با T نمایش داده می شود. این لایه بین Terminal ها و Nonterminal ها قرار می گیرد. T = {Art, Noun,Adj,Prep,Verb,Pronoun} درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند گرامرمستقل از متن دولایه برای زبان طبیعی مجموعه قواعد R = { 1- S  NP VP 2- NP  Art NP2 3- NP  NP2 4- NP2  Noun 5- NP2  Adj NP2 6- NP2  NP2 PP 7- NP2  Pronoun 8- PP  Prep NP 9- PP  Prep NP PP 10- VP  Verb 11- VP  Verb VP 12- VP  Verb NP 13- VP  VP PP 14- VP  VP NP Adj } درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

تعریف مجموعه T برای متن مورد نظر T ={Art, Noun,Adj,Prep,Verb,Pronoun} Art ={a,the,an} Noun={clouds,sky,storms,weather,rain,farmer,crops,destruction ,death,damage,hail,people,tornado} Verb ={make,help,provide,cause,bring,warn,need,cuase,kill,call} Adj ={interesting,beautiful,better,approaching} Prep ={in,by,of,over,for,with} Pronoun={they,we,us} درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند ساخت درخت برای چند جمله S NP VP NP2 Verb NP Adj Art NP2 Noun make Noun interesting the Clouds sky درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند ساخت درخت برای چند جمله S NP VP Verb VP Verb NP NP2 Art NP2 help provide Pronoun the Adj NP2 Noun They beautiful sky درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند TAG گرامر TAG معمولی یک گرامر TAG از تعدادی Tree Bank ساخته شده است. برای ساخت TAG می توان از CFG درخت ها را ساخت. درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

Clouds make the sky interesting TAG Clouds make the sky interesting R = { S  NP VP V make VP  V NP Adj Nclouds | sky NP  N Adj interesting NP  D N Dthe } درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

مجموعه درخت ها برای TAG برای یک جمله Clouds make the sky interesting Clouds make the sky interesting NP NP VP S VP D N N Adj Verb VP NP VP V NP Adj N V D N درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند ساخت درخت پارس جمله با استفاده از قوانین جایگزینی و درخت ها S NP VP Verb Adj N NP make interesting Art NP Clouds the sky درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند FSG FSG بر اساس CFG ساخته می شود. در CFG امکان نمایش روابط گرامری مربوط به زبان طبیعی وجود ندارد. در FSG روابط گرامری مربوط به زبان طبیعی در قالب ساختار AV به گرامر و کلمات اضافه می شود. اضافه شدن روابط گرامری برای درک معنا و چک برخی ناهماهنگی های معنایی است(عدم تطابق فاعل و فعل از نظر زمان، شخص و تعداد). درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند FSG مراحل ساخت یک FSG برای یک متن 1- برای تمام کلمات ساختار AV را می سازیم 2- روابط گرامری مربوط به زبان طبیعی را که روی ویژگی های اضافه شده به کلمات تعریف می شوند، به قواعد CFG اضافه می کنیم. درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

Clouds make the sky interesting FSG Clouds make the sky interesting Clouds = Make = Cat NP Root Clouds Number SG Person 3 Cat VP Root Make Number SG Person 3 درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

Clouds make the sky interesting FSG Clouds make the sky interesting The = a = interesting = Sky = Cat Det Root a Case Nonidentifying Number Sg Cat Det Root The Case Identifying Cat Adj Root interesting Cat NP Root Sky Number Sg Person 3 درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند FSG R = { S  VP NP <VP number > = <NP number> <VP person> = <NP person> VP  VP NP Adj NP  N NP  Det N <Det Number>=<N Number> } درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند پارسر در این بخش از پروژه باید برای پارس کردن متن انتخاب شده برای پروژه، یک پارسر معرفی نموده و با استفاده از آن متن را پارس کرده،در خت های پارس جملات متن را با استفاده ازآن تولید نماییم. پارسر استفاده شده در این بخش پروژه PCPATR می باشد که در ابتدا آن را معرفی نموده و پس از بیان نحوه کار آن اجزای مورد نیاز آن را که باید برای پارس نمودن متن ساخته شوند معرفی می کنیم . درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند PCPATR این پارسر براساس فرمالیزم زبانی PATR-II برای کامپیوترهای شخصی طراحی شده است. پیاده سازی این ابزار برای سیستم عامل های MS-DOS ، Microsoft Windows ، Macintosh و Unix قابل دسترسی است. این پارسر، یک chart parser با دو خصوصیت زیر می باشد: 1- پارس پایین به بالا (bottom-up) به همراه انجام یک top- down filtering براساس طبقه بندی صورت گرفته برای کلمات. 2- ترتیب پارس اجزای جمله چپ به راست (left-to-right) است . درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند اجزای مورد نیاز PCPATR برای استفاده از این پارسر در پارس جملات در هر زبانی باید چند فایل را با فرمت قابل قبول این پارسر تهیه نمود که در اینجا این فایل ها معرفی می کنیم و در بخش توضیح پروژه انجام شده فرمت هر یک از فایل ها را شرح خواهیم داد. این فایل ها عبارتند از : 1- فایل grammar.txt : این فایل شامل قواعد گرامر برای پارس کردن جملات متن مورد نظر می باشد. 2- فایل lexicon.txt : این فایل شامل کلمات متن و در صورتیکه از feature structure استفاده کنیم، شامل ویژگی کلمات نیز می باشد. 3- فایل input.txt : این فایل دربردارنده متن یا جملاتی است که می خواهیم، آن را پارس کنیم . فایل دربردارنده ورودی هر نام دیگری می تواند داشته باشد. 4- فایل output.txt : در زمان اجرای پارسر چنانچه این فایل موجود نباشد ایجاد شده. با اجرای پارسر درخت های پارس تولید شده توسط پارسر در این فایل ذخیره می شوند. درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند دستورات PCPATR برای پارس یک متن برای اجرای پارسر در نظر گرفته شده روی متن دستورات زیر را بر روی فایل هایی که در اسلاید قبل توضیح داده شده است اجرا نموده و خروجی مطلوب را به دست می آوریم. 1 – load grammar grammar.txt در این مرحله از اجرا، گرامر در نظر گرفته شده برای متن مورد نظر را به پارسر load می کنیم . به جای grammar.txt هر فایل text دیگری که شامل گرامر باشد می تواند قرار بگیرد. 2- load lexicon lexicon.txt در این مرحله از اجرا، کلمات متن را در قالب فایلی text به پارسر load می کنیم . به جای lexicon.txt هر فایل text دیگری که شامل لغات متن و ویژگی های این لغات باشد می تواند قرار بگیرد. 3 – file parse input.txt output.txt با اجرای این دستور پارسر با توجه به داده های فایل گرامر و کلمات فایل input.txt را پارس نموده و خروجی را در فایل output.txt ذخیره می کند. درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند پارس متن پروژه با استفاده از گرامر context-free روند انجام کار : 1- ساخت فایل grammar.txt : گرامر زبان انگلیسی برای جملات متن را با فرمت قابل قبول پارسر PCPATR در این فایل وارد می کنیم . Rule S -> (NP) VP (SubCl) Rule S -> S_1 (RP) S_2 Rule NP -> {(Det) (AdjP) N (PrepP)} / PR Rule NP -> NP_1 CJ NP_2 Rule NP -> {(Det) (AdjP) N_1 (PR) N_2 } Rule Det -> DT / PR Rule VP -> VerbalP (NP / AdjP) (PrepP) (AdvP) Rule VP -> VerbalP VP_1 Rule VerbalP -> V Rule VerbalP -> AuxP V Rule AuxP -> AUX (AuxP_1) Rule PrepP -> PP NP Rule AdjP -> (AV) AJ (AdjP_1) Rule AdvP -> {AV / PrepP} (AdvP_1) Rule SubCl -> CJ S درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند پارس متن پروژه با استفاده از گرامر context-free چند نکته پیرامون فرمت فایل grammar.txt : تمام قواعد با کلمه Rule شروع می شوند. سمت چپ علامت -> ، non terminal ها قرار می گیرند که گسترش داده می شوند. “/” در مواردی که چند انتخاب برای یک سمبول وجود داشته باشد از این کاراکتر استفاده می شود. ”()“ برای سمبول های optional به کار می روند. ”{}“ برای بین optional بودن گروهی از سمبول ها به کار می رود. در مواردی که یک non terminal یک یا چند بار در طرف دوم ظاهر می شود باید با استفاده از ”_“ باید شماره گذاری شوند. برای مثال : Rule NP -> NP_1 CJ NP_2 Rule AuxP -> AUX (AuxP_1) درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند پارس متن پروژه با استفاده از گرامر context-free 2- ساخت فایل lexicon.txt : در این مرحله هر یک از کلمات متن با فرمت مورد قبول به این فایل اضافه می شوند. برای مثال: \w Clouds \c N \w make \c V \w sky \w interesting \c AV \w They \c PR \w they درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند پارس متن پروژه با استفاده از گرامر context-free چند نکته پیرامون فرمت فایل lexicon.txt : بین خصوصیات هر کلمه با کلمه دیگر یک خط فاصله باشد. ”\“ برای بیان خصوصیات هر کلمه در ابتدای یک خط استفاده می شود که این خصوصیت با یک کاراکتر بیان می شود . ”\w“ در ابتدای اولین خط از خصوصیات هر کلمه و بیان کننده syntax آن کلمه می باشد و البته حساس به متن می باشد. ”\c“ این خصوصیت بیان کننده category یا طبقه کلمات می باشد. که در زبان انگلیسی این category ها عبارتند از : PN (pronoune) ، V (Verb)، DT(Determiner)، PP(Preposition)، N(Noune)، AV(Adverb)، AJ(Adjective)، CJ(Conjunction)، RP(Relative Pronoune) . درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند پارس متن پروژه با استفاده از گرامر context-free حال با توجه به فایل های grammer.txt و lexicon.txt که بر اساس متن مورد نظر تهیه شده اند و با اجرای دستورات ذکر شده درچند اسلاید قبل پارسر را بر روی فایل input.txt اجرا می کنیم . در نتیجه اجرای پارسر درخت های پارس برای هر یک از جملات متن را در فایل output.txt خواهیم داشت . برای مثال برای چند جمله نتایج اجرای پارسر را بیان می کنیم : Clouds make the sky interesting. درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند پارس متن پروژه با استفاده از گرامر context-free قابل توجه است که در برخی موارد چند در خت پارس برای یک جمله تولید شده است و این به دلیل وجود ابهام در گرامر می باشد که در بخش دیگر پروژه که پارس متن با استفاده از گرامر feature structure می باشد کم شدن تعداد این درخت های پارس را مشاهده خواهیم کرد. They warn us of approaching storms and forecast better weather ahead. درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند

آزمایشگاه سیستم های هوشمند با تشکر درس پردازش زبان طبیعی، استاد: دکتر احمد عبدالله زاده توسط: اسماعیل رضایی آزمایشگاه سیستم های هوشمند