Andrew Nealen, TU Berlin, 2006 1 CG 11 Andrew Nealen TU Berlin Takeo Igarashi The University of Tokyo / PRESTO JST Olga Sorkine Marc Alexa TU Berlin Laplacian.

Slides:



Advertisements
Similar presentations
Large Mesh Deformation Using the Volumetric Graph Laplacian
Advertisements

6.1/6.2/6.6/6.7 Graphing , Solving, Analyzing Parabolas
L1 sparse reconstruction of sharp point set surfaces
As-Rigid-As-Possible Surface Modeling
2D/3D Shape Manipulation, 3D Printing
7 th Symposium on Smart Graphics A Sketch-based Interface for Modeling Myocardial Fiber Orientation Kenshi Takayama 1 Takeo Igarashi 1,2 Ryo Haraguchi.
Least-squares Meshes Olga Sorkine and Daniel Cohen-Or Tel-Aviv University SMI 2004.
3D Modeling from a photograph
SGP 2008 A Local/Global Approach to Mesh Parameterization Ligang Liu Lei Zhang Yin Xu Zhejiang University, China Craig Gotsman Technion, Israel Steven.
High-Pass Quantization for Mesh Encoding Olga Sorkine, Daniel Cohen-Or, Sivan Toledo Eurographics Symposium on Geometry Processing, Aachen 2003.
Kernel-based tracking and video patch replacement Igor Guskov
Interactive Inverse 3D Modeling James Andrews Hailin Jin Carlo Séquin.
2D/3D Shape Manipulation, 3D Printing
Xianfeng Gu, Yaling Wang, Tony Chan, Paul Thompson, Shing-Tung Yau
MATHIEU GAUTHIER PIERRE POULIN LIGUM, DEPT. I.R.O. UNIVERSITÉ DE MONTRÉAL GRAPHICS INTERFACE 2009 Preserving Sharp Edges in Geometry Images.
Smoothing 3D Meshes using Markov Random Fields
Siggraph Course Mesh Parameterization: Theory and Practice Barycentric Mappings.
CS CS 175 – Week 4 Mesh Decimation General Framework, Progressive Meshes.
INFORMATIK Differential Coordinates for Interactive Mesh Editing Yaron Lipman Olga Sorkine Daniel Cohen-Or David Levin Tel-Aviv University Christian Rössl.
A Sketch-Based Interface for Detail-Preserving Mesh Editing Andrew Nealen Olga Sorkine Marc Alexa Daniel Cohen-Or.
Uncertainty and Variability in Point Cloud Surface Data Mark Pauly 1,2, Niloy J. Mitra 1, Leonidas J. Guibas 1 1 Stanford University 2 ETH, Zurich.
Filling Arbitrary Holes in Finite Element Models 17 th International Meshing Roundtable 2008 Schilling, Bidmon, Sommer, and Ertl.
Mesh Parameterization: Theory and Practice Barycentric Mappings.
Optimal Bandwidth Selection for MLS Surfaces
CS CS 175 – Week 5 Mesh Decimation Fairness Criteria.
FiberMesh: Designing Freeform Surfaces with 3D Curves
Feature-Based Mesh Editing Qingnan Zhou 1 Tino Weinkauf 1,2 Olga Sorkine 1,3 1 NYU 2 MPII Saarbrücken 3 ETH Zürich.
Part Two Multiresolution Analysis of Arbitrary Meshes M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle SIGGRAPH 95.
Computer Graphics Recitation The plan today Least squares approach  General / Polynomial fitting  Linear systems of equations  Local polynomial.
Smooth Geometry Images Frank Losasso, Hugues Hoppe, Scott Schaefer, Joe Warren.
Normal Estimation in Point Clouds 2D/3D Shape Manipulation, 3D Printing March 13, 2013 Slides from Olga Sorkine.
Laplacian Surface Editing
Gwangju Institute of Science and Technology Intelligent Design and Graphics Laboratory Feature-Aware Filtering for Point-Set Surface Denoising Min Ki Park*Seung.
Intrinsic Parameterization for Surface Meshes Mathieu Desbrun, Mark Meyer, Pierre Alliez CS598MJG Presented by Wei-Wen Feng 2004/10/5.
CSE554Laplacian DeformationSlide 1 CSE 554 Lecture 8: Laplacian Deformation Fall 2012.
Gwangju Institute of Science and Technology Intelligent Design and Graphics Laboratory Multi-scale tensor voting for feature extraction from unstructured.
Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces
Estimation-Quantization Geometry Coding using Normal Meshes
Modal Shape Analysis beyond Laplacian (CAGP 2012) Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, Konrad Polthier (brief) Presenter: ShiHao.Wu.
Recent Work on Laplacian Mesh Deformation Speaker: Qianqian Hu Date: Nov. 8, 2006.
Mesh Deformation Based on Discrete Differential Geometry Reporter: Zhongping Ji
TER - ENSIMAG D Regularization of Animated Surfaces Simon Courtemanche Supervisors : Franck Hétroy, Lionel Revéret, Estelle Duveau Team : EVASION.
Global Parametrization of Range Image Sets Nico Pietroni, Marco Tarini, Olga Sorkine, Denis Zorin.
1 Triangle Surfaces with Discrete Equivalence Classes Published in SIGGRAPH 2010 報告者 : 丁琨桓.
Computer Graphics Some slides courtesy of Pierre Alliez and Craig Gotsman Texture mapping and parameterization.
INFORMATIK Laplacian Surface Editing Olga Sorkine Daniel Cohen-Or Yaron Lipman Tel Aviv University Marc Alexa TU Darmstadt Christian Rössl Hans-Peter Seidel.
Procrustes Analysis and Its Application in Computer Graphics Speaker: Lei Zhang 2008/10/08.
Andrew Nealen / Olga Sorkine / Mark Alexa / Daniel Cohen-Or SoHyeon Jeong 2007/03/02.
AS-RIGID-AS-POSSIBLE SHAPE MANIPULATION
Wiener Subdivision Presented by Koray KAVUKCUOGLU Geometric Modeling Spring 2004.
Extraction and remeshing of ellipsoidal representations from mesh data Patricio Simari Karan Singh.
Temporally Coherent Completion of Dynamic Shapes AUTHORS:HAO LI,LINJIE LUO,DANIEL VLASIC PIETER PEERS,JOVAN POPOVIC,MARK PAULY,SZYMON RUSINKIEWICZ Presenter:Zoomin(Zhuming)
Lapped Solid Textrues Filling a Model with Anisotropic Textures
SKETCH-BASED MODELING ZHINAN XU AND MENGYI ZHU. MOTIVATION By providing the conversion between 2D sketch and 3D model, the designer will be able to quickly.
David Levin Tel-Aviv University Afrigraph 2009 Shape Preserving Deformation David Levin Tel-Aviv University Afrigraph 2009 Based on joint works with Yaron.
Hierarchical Deformation of Locally Rigid Meshes Josiah Manson and Scott Schaefer Texas A&M University.
§ Separation of Cartesian variables: Orthogonal functions Christopher Crawford PHY
Outline ● Introduction – What is the problem ● Generate stochastic textures ● Improve realism ● High level approach - Don't just jump into details – Why.
Romain Pacanowski INRIA Bordeaux University Xavier GranierChristophe SchlickPierre Poulin.
An Area-Preserving Cortical Flattening Method Yuefeng Lu 1, Moo K. Chung 1,2,3,, Steve Robbins 4, Alan C. Evans 4 1 Department of Statistics, 2 W.M. Keck.
Outline ● Introduction – What is the problem ● Generate stochastic textures ● Improve realism ● High level approach - Don't just jump into details – Why.
Point Based Animation of Elastic, Plastic and Melting Objects Mark Pauly Andrew Nealen Marc Alexa ETH Zürich TU Darmstadt Stanford Matthias Müller Richard.
Differential Coordinates and Laplacians Nicholas Vining Technical Director, Gaslamp Games.
1 An approach based on shortest path and connectivity consistency for sensor network localization problems Makoto Yamashita (Tokyo Institute of Technology)
Let W be a subspace of R n, y any vector in R n, and the orthogonal projection of y onto W. …
Tessellation Shaders.
Mesh Modelling With Curve Analogies
You can check broken videos in this slide here :
Terrain-following coordinates over steep and high orography
Mesh Parameterization: Theory and Practice
Presentation transcript:

Andrew Nealen, TU Berlin, CG 11 Andrew Nealen TU Berlin Takeo Igarashi The University of Tokyo / PRESTO JST Olga Sorkine Marc Alexa TU Berlin Laplacian Mesh Optimization

Andrew Nealen, TU Berlin, CG 22 What is it ?

Andrew Nealen, TU Berlin, CG 33 Overview  Motivation Problem formulation Laplacian mesh processing basics  Laplacian mesh optimization framework  Applications Triangle shape optimization Mesh smoothing  Discussion

Andrew Nealen, TU Berlin, CG 44 Motivation  Local detail preserving triangle optimization A Sketch-Based Interface for Detail Preserving Mesh Editing [Nealen et al. 2005]

Andrew Nealen, TU Berlin, CG 55 Motivation  Local detail preserving triangle optimization A Sketch-Based Interface for Detail Preserving Mesh Editing [Nealen et al. 2005]  Can we perform global optimization this way ? = L x 

Andrew Nealen, TU Berlin, CG 66 Laplacian Mesh Processing  Discrete Laplacians = Lx  n  cotangent : w ij = cot  ij + cot  ij  uniform : w ij = 1

Andrew Nealen, TU Berlin, CG 77 Laplacian Mesh Processing  Surface reconstruction n  cotangent : w ij = cot  ij + cot  ij  uniform : w ij = 1 = Lx  LL y z x zz yy xx

Andrew Nealen, TU Berlin, CG 88 Laplacian Mesh Processing  Surface reconstruction n zz yy xx y z x = L L Lc1c1    fix edit c2c2   

Andrew Nealen, TU Berlin, CG 99 Laplacian Mesh Processing  Least-squares solution n zz yy xx y z x = L L Lc1c1    fix edit c2c2    w1w1 w1w1 w2w2 w2w2 w Li Ax = b ATAATAx = bATAT (A T A) -1 x = bATAT Normal Equations

Andrew Nealen, TU Berlin, CG 10 Laplacian Mesh Processing  Tangential smoothing n zz yy xx y z x = L L L fix c1c1    L L L

Andrew Nealen, TU Berlin, CG 11 L L L Laplacian Mesh Processing  Tangential smoothing n zz yy xx y z x = fix c1c1   

Andrew Nealen, TU Berlin, CG 12 L L L Laplacian Mesh Processing  Tangential smoothing n zz yy xx y z x = fix c1c1   

Andrew Nealen, TU Berlin, CG 13 More motivation…  So: can we use such a system for global optimization ? =Lx 

Andrew Nealen, TU Berlin, CG 14 Our Solution  All vertices are (weighted) anchors  Preserves global shape  Uses existing LS framework  Anchor + Laplacian weights determine result

Andrew Nealen, TU Berlin, CG 15 Framework  Detail preserving tri shape optimization for L = L uni and f =  cot  (similar to local optimization)  Mesh smoothing L = L cot (outer fairness) or L = L uni (outer and inner fairness) and f = 0 = Lxf WLWL WLWL p WPWP WPWP

Andrew Nealen, TU Berlin, CG 16 Tri Shape Optimization  Detail preserving tri shape optimization = L uni x  p WPWP WPWP

Andrew Nealen, TU Berlin, CG 17 Positional Weights

Andrew Nealen, TU Berlin, CG 18 Constant Weights

Andrew Nealen, TU Berlin, CG 19 Linear Weights

Andrew Nealen, TU Berlin, CG 20 CDF Weights

Andrew Nealen, TU Berlin, CG 21 CDF Weights

Andrew Nealen, TU Berlin, CG 22 Sharp Features

Andrew Nealen, TU Berlin, CG 23 Sharp Features

Andrew Nealen, TU Berlin, CG 24 Sharp Features

Andrew Nealen, TU Berlin, CG 25 Mesh Smoothing  Mesh smoothing L = L cot (outer fairness) or L = L umb (outer and inner fairness) and f = 0  Controlled by W P and W L (Intensity, Features)  Similar to Least-Squares Meshes [Sorkine et al. 04] = Lx0 WLWL WLWL p WPWP WPWP

Andrew Nealen, TU Berlin, CG 26 Using W P

Andrew Nealen, TU Berlin, CG 27 Using W P and W L

Andrew Nealen, TU Berlin, CG 28 Results

Andrew Nealen, TU Berlin, CG 29 Noisy

Andrew Nealen, TU Berlin, CG 30 Smoothed

Andrew Nealen, TU Berlin, CG 31 Original

Andrew Nealen, TU Berlin, CG 32 Tri Shape Optimization

Andrew Nealen, TU Berlin, CG 33 Smoothing Outer and Inner Fairness (L umb )

Andrew Nealen, TU Berlin, CG 34 Original

Andrew Nealen, TU Berlin, CG 35 Tri Shape Optimization

Andrew Nealen, TU Berlin, CG 36 Smoothing Outer Fairness only (L cot )

Andrew Nealen, TU Berlin, CG 37 Discussion  The good... Easily controllable tri shape optimization and smoothing Leverages existing least squares framework Can replace tangential smoothing step for general remeshers ... and the not so good Euclidean distance is not Hausdorff distance, so error control is indirect Does rely on some (user) parameter tweaking

Andrew Nealen, TU Berlin, CG 38 Thank you !  Contact info Andrew Nealen Takeo Igarashi Olga Sorkine Marc Alexa