Medical Image Synthesis via Monte Carlo Simulation An Application of Statistics in Geometry & Building a Geometric Model with Correspondence.

Slides:



Advertisements
Similar presentations
Sarang Joshi #1 Computational Anatomy: Simple Statistics on Interesting Spaces Sarang Joshi, Tom Fletcher Scientific Computing and Imaging Institute Department.
Advertisements

Computerized Craniofacial Reconstruction using CT-derived Implicit Surface Representations D. Vandermeulen, P. Claes, D. Loeckx, P. Suetens Medical Image.
Medical Image Registration Kumar Rajamani. Registration Spatial transform that maps points from one image to corresponding points in another image.
Independent Component Analysis Personal Viewpoint: Directions that maximize independence Motivating Context: Signal Processing “Blind Source Separation”
System Challenges in Image Analysis for Radiation Therapy Stephen M. Pizer Kenan Professor Medical Image Display & Analysis Group University.
These improvements are in the context of automatic segmentations which are among the best found in the literature, exceeding agreement between experts.
Intensity-based deformable registration of 2D fluoroscopic X- ray images to a 3D CT model Aviv Hurvitz Advisor: Prof. Leo Joskowicz.
Jeroen Hermans, Frederik Maes, Dirk Vandermeulen, Paul Suetens
Dinggang Shen Development and Dissemination of Robust Brain MRI Measurement Tools ( 1R01EB ) Department of Radiology and BRIC UNC-Chapel Hill IDEA.
A 4-WEEK PROJECT IN Active Shape and Appearance Models
Non-Rigid Registration. Why Non-Rigid Registration  In many applications a rigid transformation is sufficient. (Brain)  Other applications: Intra-subject:
Multiscale Profile Analysis Joshua Stough MIDAG PI: Chaney, Pizer July, 2003 Joshua Stough MIDAG PI: Chaney, Pizer July, 2003.
Combining the strengths of UMIST and The Victoria University of Manchester MICCAI 2005: Statistics of Anatomic Geometry Statistics of Anatomic Geometry:
Medial Object Shape Representations for Image Analysis & Object Synthesis Stephen M. Pizer Kenan Professor Medical Image Display & Analysis Group.
University of North Carolina Comparison of Human and M-rep Kidneys Segmented from CT Images James Chen, Gregg Tracton, Manjari Rao, Sarang Joshi, Steve.
Medical Image Synthesis via Monte Carlo Simulation James Z. Chen, Stephen M. Pizer, Edward L. Chaney, Sarang Joshi Medical Image Display & Analysis Group,
Clustering on Image Boundary Regions for Deformable Model Segmentation Joshua Stough, Stephen M. Pizer, Edward L. Chaney, Manjari Rao Medical Image Display.
Yujun Guo Kent State University August PRESENTATION A Binarization Approach for CT-MR Registration Using Normalized Mutual Information.
The Uses of Object Shape from Images in Medicine Stephen M. Pizer Kenan Professor Medical Image Display & Analysis Group University of North.
Clustering on Local Appearance for Deformable Model Segmentation Joshua V. Stough, Robert E. Broadhurst, Stephen M. Pizer, Edward L. Chaney MIDAG, UNC-Chapel.
Visualizing Image Model Statistics for the Human Kidney Liz Dolan, Joshua Stough COMP December 2, 2003.
Caudate Shape Discrimination in Schizophrenia Using Template-free Non-parametric Tests Y. Sampath K. Vetsa 1, Martin Styner 1, Stephen M. Pizer 1, Jeffrey.
Active Appearance Models Computer examples A. Torralba T. F. Cootes, C.J. Taylor, G. J. Edwards M. B. Stegmann.
Medical Image Registration
P. Rodríguez, R. Dosil, X. M. Pardo, V. Leborán Grupo de Visión Artificial Departamento de Electrónica e Computación Universidade de Santiago de Compostela.
1 Stephen Pizer, Sarang Joshi, Guido Gerig Medical Image Display & Analysis Group (MIDAG) University of North Carolina, USA with credit to P. T. Fletcher,
Stephen Pizer Medical Image Display & Analysis Group University of North Carolina, USA with credit to T. Fletcher, A. Thall, S. Joshi, P. Yushkevich, G.
Towards a Multiscale Figural Geometry Stephen Pizer Andrew Thall, Paul Yushkevich Medical Image Display & Analysis Group.
Department of Informatics, Aristotle University of Thessaloniki, May 4, 2001 ARISTOTLE UNIVERSITY OF THESSALONIKI. DEPARTMENT OF INFORMATICS Stelios Krinidis.
Statistics of Anatomic Geometry Stephen Pizer, Kenan Professor Medical Image Display & Analysis Group University of North Carolina This tutorial.
An Integrated Pose and Correspondence Approach to Image Matching Anand Rangarajan Image Processing and Analysis Group Departments of Electrical Engineering.
Statistical Shape Models Eigenpatches model regions –Assume shape is fixed –What if it isn’t? Faces with expression changes, organs in medical images etc.
PhD Thesis. Biometrics Science studying measurements and statistics of biological data Most relevant application: id. recognition 2.
Image Guided Surgery in Prostate Brachytherapy Rohit Saboo.
NA-MIC National Alliance for Medical Image Computing DTI atlas building for population analysis: Application to PNL SZ study Casey Goodlett,
Vascular Attributes and Malignant Brain Tumors MICCAI November 2003 CONCLUSIONS References: [1] Aylward S, Bullitt E (2002) Initialization, noise, singularities.
Consistent Linear-Elastic Transformations for Image Matching Gary E. Christensen Department of Electrical & Computer Engineering The University of Iowa.
Multimodal Interaction Dr. Mike Spann
DTU Medical Visionday May 27, 2009 Generative models for automated brain MRI segmentation Koen Van Leemput Athinoula A. Martinos Center for Biomedical.
1 ECE 738 Paper presentation Paper: Active Appearance Models Author: T.F.Cootes, G.J. Edwards and C.J.Taylor Student: Zhaozheng Yin Instructor: Dr. Yuhen.
Building Prostate Statistical Atlas using Large-Deformation Image Registration Eric Hui University of Waterloo – MIAMI Bi-weekly.
S. Kurtek 1, E. Klassen 2, Z. Ding 3, A. Srivastava 1 1 Florida State University Department of Statistics 2 Florida State University Department of Mathematics.
Enhanced Correspondence and Statistics for Structural Shape Analysis: Current Research Martin Styner Department of Computer Science and Psychiatry.
A Novel Image Registration Pipeline for 3- D Reconstruction from Microscopy Images Kun Huang, PhD; Ashish Sharma, PhD; Lee Cooper, MS; Kun Huang, PhD;
Methods Validation with Simulated Data 1.Generate random linear objects in the model coordinate system. 2.Generate a random set of points on each linear.
MEDICAL IMAGE REGISTRATION BY MAXIMIZATION OF MUTUAL INFORMATION Dissertation Defense by Chi-hsiang Lo June 27, 2003 PRESENTATION.
Medical Image Analysis Image Registration Figures come from the textbook: Medical Image Analysis, by Atam P. Dhawan, IEEE Press, 2003.
NA-MIC National Alliance for Medical Image Computing ABC: Atlas-Based Classification Marcel Prastawa and Guido Gerig Scientific Computing.
NA-MIC National Alliance for Medical Image Computing Competitive Evaluation & Validation of Segmentation Methods Martin Styner, UNC NA-MIC.
Spatio-Temporal Free-Form Registration of Cardiac MR Image Sequences Antonios Perperidis s /02/2006.
Algorithms for Image Registration: Advanced Normalization Tools (ANTS) Brian Avants, Nick Tustison, Gang Song, James C. Gee Penn Image Computing and Science.
A New Method of Probability Density Estimation for Mutual Information Based Image Registration Ajit Rajwade, Arunava Banerjee, Anand Rangarajan. Dept.
Conclusions The success rate of proposed method is higher than that of traditional MI MI based on GVFI is robust to noise GVFI based on f1 performs better.
Multimodal Interaction Dr. Mike Spann
A Unified Feature Registration Framework for Brain Anatomical Alignment Haili Chui, Robert Schultz, Lawrence Win, James Duncan and Anand Rangarajan* Image.
Cores (defined at right) are used to automatically segment, or outline, objects in grayscale images (Fig. 1). A core provides geometric information about.
Automatic pipeline for quantitative brain tissue segmentation and parcellation: Experience with a large longitudinal schizophrenia MRI study 1,2 G Gerig,
National Alliance for Medical Image Computing Hierarchical Atlas Based EM Segmentation.
Detection of Anatomical Landmarks Bruno Jedynak Camille Izard Georgetown University Medical Center Friday October 6, 2006.
Spatial processing of FMRI data And why you may care.
Anatomic Geometry & Deformations and Their Population Statistics (Or Making Big Problems Small) Stephen M. Pizer, Kenan Professor Medical Image.
Evaluation of an Automatic Algorithm Based on Kernel Principal Component Analysis for Segmentation of the Bladder and Prostate in CT Scans Siqi Chen and.
Clustering on Image Boundary Regions for Deformable Model Segmentation Joshua Stough, Stephen M. Pizer, Edward L. Chaney, Manjari Rao, Gregg.
NAMIC Activities at UNC
Segmentation of Single-Figure Objects by Deformable M-reps
Registration of Pathological Images
Groupwise Registration and Atlas Estimation
Tobias Heimann - DKFZ Ipek Oguz - UNC Ivo Wolf - DKFZ
Presentation transcript:

Medical Image Synthesis via Monte Carlo Simulation An Application of Statistics in Geometry & Building a Geometric Model with Correspondence James Z. Chen, Stephen M. Pizer, Edward L. Chaney, Sarang Joshi, Joshua Stough Presented by: Joshua Stough Medical Image Display & Analysis Group, UNC midag.cs.unc.edu An Application of Statistics in Geometry & Building a Geometric Model with Correspondence James Z. Chen, Stephen M. Pizer, Edward L. Chaney, Sarang Joshi, Joshua Stough Presented by: Joshua Stough Medical Image Display & Analysis Group, UNC midag.cs.unc.edu

Population Simulation Requires Statistical Profiling of Shape Goal: Develop a methodology for generating realistic synthetic medical images AND the attendant “ground truth” segmentations for objects of interest. Why: Segmentation method evaluation. How: Build and sample probability distribution of shape. Goal: Develop a methodology for generating realistic synthetic medical images AND the attendant “ground truth” segmentations for objects of interest. Why: Segmentation method evaluation. How: Build and sample probability distribution of shape.

Basic Idea ä New images via deformation of template geometry and image. ä Characteristics ä Legal images represent statistical variation of shape over a training set. ä Image quality as in a clinical setting. ä New images via deformation of template geometry and image. ä Characteristics ä Legal images represent statistical variation of shape over a training set. ä Image quality as in a clinical setting. HtHt

The Process James Chen

RegistrationRegistration ä Registration – Composition of Two Transformations ä Linear – MIRIT, Frederik Maes ä Affine transformation, 12 dof ä Non-linear–Deformation Diffeomorphism, Joshi ä For all I t, I t  H t (I 0 ) and S t  H t (S 0 ) ä Registration – Composition of Two Transformations ä Linear – MIRIT, Frederik Maes ä Affine transformation, 12 dof ä Non-linear–Deformation Diffeomorphism, Joshi ä For all I t, I t  H t (I 0 ) and S t  H t (S 0 )

Consequence of an Erroneous H t James Chen

Generating the Statistics of H t James Chen

Fiducial Point Model ä H t is locally correlated ä Fiducial point choice via greedy iterative algorithm ä H t ' determined by Joshi Landmark Deformation Diffeomorphism ä The Idea: Decrease ä H t is locally correlated ä Fiducial point choice via greedy iterative algorithm ä H t ' determined by Joshi Landmark Deformation Diffeomorphism ä The Idea: Decrease

FPM Generation Algorithm 1. 1.Initialize {F m } with a few geometrically salient points on S 0 ; 2. 2.Apply the training warp function H t on {F m } to get the warped fiducial points : F m,t = H t (F m ); 3. 3.Reconstruct the diffeomorphic warp field H' t for the entire image volume based on the displacements {F m,t – F m }; 4. 4.For each training case t, locate the point p t on the surface of S 0 that yields the largest discrepancy between H t and H' t ; 5. 5.Find most discrepant point p over the point set {p t } established from all training cases. Add p to the fiducial point set; 6. 6.Return to step 2 until a pre-defined optimization criterion has been reached Initialize {F m } with a few geometrically salient points on S 0 ; 2. 2.Apply the training warp function H t on {F m } to get the warped fiducial points : F m,t = H t (F m ); 3. 3.Reconstruct the diffeomorphic warp field H' t for the entire image volume based on the displacements {F m,t – F m }; 4. 4.For each training case t, locate the point p t on the surface of S 0 that yields the largest discrepancy between H t and H' t ; 5. 5.Find most discrepant point p over the point set {p t } established from all training cases. Add p to the fiducial point set; 6. 6.Return to step 2 until a pre-defined optimization criterion has been reached.

A locally accurate warp via FPM landmarks Volume overlap optimization optimization criterion tracks criterion tracks mean warp mean warp discrepancy discrepancy Under 100 fiducial points, of points, of thousands on thousands on surface surface Volume overlap optimization optimization criterion tracks criterion tracks mean warp mean warp discrepancy discrepancy Under 100 fiducial points, of points, of thousands on thousands on surface surface ATLASWARPTRAINING

Human Kidney Example ä 36 clinical CT images in the training set ä Monotonic Optimization ä 88 fiducial points sufficiently mimick inter-human rater results (94% volume overlap) ä 36 clinical CT images in the training set ä Monotonic Optimization ä 88 fiducial points sufficiently mimick inter-human rater results (94% volume overlap)

Fiducial Point Model Is an Object Representation with Positional Correspondence ä Positional correspondence is via the H ' interpolated from the displacements at the fiducial points ä The correspondence makes this representation suitable for statistical analysis ä Positional correspondence is via the H ' interpolated from the displacements at the fiducial points ä The correspondence makes this representation suitable for statistical analysis

Statistical Analysis of the Geometry Representation James Chen

Principal Components Analysis of the FPM Displacements ä Points in 3M-d space ä Analyze deviation from mean ä Example: ä Example: first seven modes of FPM cover 88% of the total variation. ä Points in 3M-d space ä Analyze deviation from mean ä Example: ä Example: first seven modes of FPM cover 88% of the total variation.

Modes of Variation – Human Kidney I II III ATLAS MEAN

Generating Samples of Image Intensity Patterns James Chen

ResultsResults

ResultsResults

MiscellaneousMiscellaneous ä National Cancer Institute Grant P01 CA47982 References Gerig, G., M. Jomier, M. Chakos (2001). “Valmet: A new validation tool for assessing and improving 3D object segmentation.” Proc. MICCAI 2001, Springer LNCS 2208: Cootes, T. F., A. Hill, C.J. Taylor, J. Haslam (1994). “The Use of Active Shape Models for Locating Structures in Medical Images.” Image and Vision Computing 12(6): Rueckert, D., A.F. Frangi, and J.A. Schnabel (2001). “Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration.” MICCAI 2001, Springer LNCS 2208: Christensen, G. E., S.C. Joshi and M.I. Miller (1997). “Volumetric Transformation of Brain Anatomy.” IEEE Transactions on Medical Imaging 16: Joshi, S., M.I. Miller (2000). “Landmark Matching Via Large Deformation Diffeomorphisms.” IEEETransactions on Image Processing. Maes, F., A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens (1997). “Multi-Modality Image Registration by Maximization of Mutual Information.” IEEE-TMI 16: Pizer, S.M., J.Z. Chen, T. Fletcher, Y. Fridman, D.S. Fritsch, G. Gash, J. Glotzer, S. Joshi, A. Thall, G. Tracton, P. Yushkevich, and E. Chaney (2001). “Deformable M-Reps for 3D Medical Image Segmentation.” IJCV, submitted.