Marco Miceli, INAF – Osservatorio Astronomico di Palermo Consorzio COMETA, Italy Collaborators F. Bocchino, INAF – Osservatorio Astronomico di Palermo,

Slides:



Advertisements
Similar presentations
Simulated synchrotron emission from Pulsar Wind Nebulae Delia Volpi Dipartimento di Astronomia e Scienza dello Spazio-Università degli Studi di Firenze-Italia.
Advertisements

Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Front X-ray Studies of Galaxies and Galaxy Systems Jesper Rasmussen Ph.D. Defence Astronomical Observatory, Univ. of Copenhagen 17th March 2004.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
Supernovae High Energy Astrophysics
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
Astroparticle Physics : Fermi’s Theories of Shock Acceleration - II
For a typical white dwarf density of 5  10 8 g cm -3 and a pure carbon environment, the flame thickness is 3.78  cm and the speed is 58 km s -1.
Formulation for the Relativistic Blast Waves Z. Lucas Uhm Research Center of MEMS Space Telescope (RCMST) & Institute for the Early Universe (IEU), Ewha.
October 10, 2002COSPAR Houston, TX1 X-Ray Spectral Morphologies of Young Supernova Remnants John P. Hughes Rutgers University  Cara Rakowski, Rutgers.
Facts about SNe and their remnants Evolution of an SNR sensitively depends on its environment. Observed SNRs are typically produced by SNe in relative.
NASA's Chandra Sees Brightest Supernova Ever N. Smith et al. 2007, astro-ph/ v2.
New evidence for strong nonthermal effects in Tycho’s supernova remnant Leonid Ksenofontov 1 H.J.Völk 2, E.G.Berezhko 1, 1 Yu.G.Shafer Institute of Cosmophysical.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Chamber Dynamic Response Modeling Zoran Dragojlovic.
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Shock Waves: II. HII Regions + Planetary Nebulae.
January 8, st AAS Meeting1 Nucleosynthesis, Pulsars, Cosmic Rays, and Shock Physics: High Energy Studies of Supernova Remnants with Chandra and.
Shock Waves: I. Brief Introduction + Supernova Remnants
Astrophysics & Cosmology Sabine Schindler Institute for Astrophysics University of Innsbruck.
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Diagnostics of the origin of X- ray emission in Cygnus Loop Xin Zhou, INAF – Osservatorio Astronomico di Palermo, Italy & Nanjing University, ChinaCollaborators:
ESA/ESTEC Feb Effects of X-ray and UV Radiation from Very Young Sun on Biomolecules Angela Ciaravella INAF – Osservatorio Astronomico di Palermo.
ASCI/Alliances Center for Astrophysical Thermonuclear Flashes Evaporation of Clouds in Thermally Conducting, Radiative Supernova Remnants S. Orlando (1),
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
Yutaka Fujita (Osaka U.) Fuijta, Takahara, Ohira, & Iwasaki, 2011, MNRAS, in press (arXiv: )
COSPAR 2008, Montreal, 13 July Patrick Slane (CfA) X-ray Observations of Supernova Remnant Shocks.
The Interstellar Medium
High Performance Computing on the GRID Infrastructure of COMETA S. Orlando 1,2, G. Peres 3,1,2, F. Reale 3,1,2, F. Bocchino 1,2, G.G. Sacco 2, M. Miceli.
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
Rino Bandiera, Arcetri Obs., Firenze, ItalyA Basic Course on SNRs A Basic Course on Supernova Remnants Lecture #1 –How do they look and how are observed?
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
Stellar Feedback Effects on Galaxy Formation Filippo Sigward Università di Firenze Dipartimento di Astronomia e Scienza dello Spazio Japan – Italy Joint.
22 nd February 2007 Poonam Chandra Unusual Behavior in Radio Supernovae Poonam Chandra Jansky Fellow, National Radio Astronomy Observatory Astronomy Department,
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
X-ray signature of shock modification in SN 1006 Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era July , Boston, USA Marco Miceli.
NUMERICAL ASTROPHYSICS - General aspects - INAF-Cineca agreement - Bologna Workshop (2002)
Image: Toward high-resolved hydrodynamic Simulations of Supernova remnants such as Cas A, Tycho.. Masaomi Ono.
Progenitor stars of supernovae Poonam Chandra Royal Military College of Canada.
Barrel or Bilateral-shaped SNRs Jiangtao Li May 6th 2009.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Expected Gamma-Ray Emission of SN 1987A in the Large Magellanic Cloud (d = 50 kpc) E.G.Berezhko 1, L.T. Ksenofontov 1, and H.J.Völk 2 1 Yu.G.Shafer Institute.
Y. Matsuo A), M. Hashimoto A), M. Ono A), S. Nagataki B), K. Kotake C), S. Yamada D), K. Yamashita E) Long Time Evolutionary Simulations in Supernova until.
Shock-cloud interaction in the Vela SNR: the XMM-Newton view M. Miceli 1, F. Bocchino 2, A. Maggio 2, F. Reale 1 1.Dipartimento di Scienze Fisiche ed Astronomiche,
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Chapter 4 Hydrodynamics of Laser Plasma as Neutral Fluids
Learning target: I can describe black holes Vocabulary: black hole, Agenda: Blackhole notes Blackhole math Stellar evolution activity Learning target DEC.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
ASTR112 The Galaxy Lecture 12 Prof. John Hearnshaw 16. Evolution of the Galaxy 16.1 Star formation 16.2 Exchange of material between stars and ISM 16.3.
Tools for computing the AGN feedback: radio-loudness and the kinetic luminosity function Gabriele Melini Fabio La Franca Fabrizio Fiore Active Galactic.
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 7. Supernova Remnants.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
FESR Consorzio COMETA - Progetto PI2S2 Supernova Remnants and Grid Computing at INAF-OAPa Marco Miceli Consorzio COMETA, INAF-OAPa.
Star Formation Nucleosynthesis in Stars
Vikram V Dwarkadas University of Chicago
Cen A & its interaction with the X-ray-emitting ISM
Nebula.
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Marco Miceli, INAF – Osservatorio Astronomico di Palermo Consorzio COMETA, Italy Collaborators F. Bocchino, INAF – Osservatorio Astronomico di Palermo, Italy F. Reale, INAF – OAPa, Università di Palermo, Italy S. Orlando, INAF – Osservatorio Astronomico di Palermo, Italy 5 th Jetset School on High Performance Computing in Astrophysics 8 th -13 th January 2008 Galway, Ireland Hydrodynamic evolution of ejecta in the Vela SNR

Supernova Remnants Supernova explosion  Total energy released:  erg  “Visible” energy:  erg  Mass ejected: several solar masses G  Formation of blast wave shocks  Heating of the ambient medium  Compression  Interaction with interstellar clouds  Propagation of the ejecta  Chemical enrichment of the galaxy  Propagation of supersonic “bullets”

The Vela SNR Distance: ~250 pc Age: ~11000 yr In middle-aged SNR the bulk of the X-ray emission is commonly associated with shocked ISM, but: Vela SNR: 6 X-ray emitting “shrapnels”, that are probably associated with ejecta (outside the border of the shell). Recent discovery of new shrapnels inside the shell (Miceli et al. 2007, ApJ accepted) keV Rosat All Sky Survey

Hydrodynamic modeling  : mass density v : bulk velocity P : pressure E : tot. energy per unit mass q :  (T)  T (Spitzer & saturated) n : density  ( T ): radiative losses function  : internal energy per unit mass Numerical solution through the FLASH HD code (Fryxell, 2000) P= Aims: evolution of supersonic fragments of ejecta (interaction with the shock waves and with the ambient medium) Equations of the model:

Hydrodynamic modeling r (cm) z (cm) Initial conditions: exploding sphere of ejecta with a density inhomogeneity (i. e. the shrapnel)  M ej = 12 M ⊙  E = erg  R 0 = 4.5 x cm  V ej (R 0 ) = 6 x cm/s (v(R)  r)   (R) following Wang & Chevalier 2002  M shrapnel = 1/20 M ej   shrapnel =   ej 2-D simulations in cylindrical coordinates (axial symmetry). We follow the evolution of the system for ~ yr (the Vela age is ~ yr)

Parameter space exploration (*) : We investigate how the evolution of the system depends on the density contrast (between the shrapnel and the surrounding ejecta) and on the initial position of the shrapnel. R shrapnel /R 0  “Complete” run executed on the CINECA CLX cluster (total CPU time~9000 h) “Complete” runs to be done on the COMETA HPC system Pure HD run (no thermal cond. no rad. losses) executed on the HPC system COMETA (total CPU time~250 h, memory~7 Mb, output size~3 Gb). Hydrodynamic modeling (*) Work in progress…

log  (g/cm 3 ) T (K) spatial res x 2048 point The Vela SNR keV ROSAT All SKy Survey ( keV) The “pure HD” run:  = 30, R shr = 1/3 R 0 ) Hydrodynamic modeling