LIG O HW S Introduction to Bicoherence Monitors: BicoViewer & BicoMon Steve Penn (HWS)

Slides:



Advertisements
Similar presentations
Bicoherence studies on LLO data Vijay Chickarmane, Gabriela Gonzalez LSU Offline analysis of bicoherence of 6hrs of data, July 12, 2002 using functions.
Advertisements

Calibration of the gravitational wave signal in the LIGO detectors Gabriela Gonzalez (LSU), Mike Landry (LIGO-LHO), Patrick Sutton (PSU) with the calibration.
Anatomy of an ldasJob LSC Meeting March 2001 Antony C. Searle ACIGA / ANU LIGO-G Z.
Evaluation of Reconstruction Techniques
MAX-PLANCK-INSTITUT FÜR GRAVITATIONSPHYSIK ALBERT-EINSTEIN-INSTITUT Karsten Kötter1 DC Data Analysis SEI/SUS (Suspensions & Seismic Isolation)
Quickfilter Pro Software Demonstration for QF4A512 The following slides will illustrate how you can design and verify a filter design in minutes! BEGIN.
Introduction The aim the project is to analyse non real time EEG (Electroencephalogram) signal using different mathematical models in Matlab to predict.
LIGO-G Z RayleighMonitor Overview Patrick Sutton and Peter Saulson.
LIG O HW S Update on Monitoring Bicoherence Steve Penn (HWS) LIGO-G Z.
Spectrum Sensing Based on Cyclostationarity In the name of Allah Spectrum Sensing Based on Cyclostationarity Presented by: Eniseh Berenjkoub Summer 2009.
LIGO-G Z Introduction to RayleighMonitor Patrick Sutton LIGO - Caltech.
Vibrational Analysis Supported formats: Gaussian & ADF Output files.
Introduction to Wavelets
Optical Communication System Design Software
Lecture 16 Random Signals and Noise (III) Fall 2008 NCTU EE Tzu-Hsien Sang.
LIGO-G0200XX-00-M DMT Monitors: Beyond the FOM John Zweizig LIGO/Caltech LLO August 18, 2006.
EE 198 B Senior Design Project. Spectrum Analyzer.
Introduction To Signal Processing & Data Analysis
ALLEGRO G Z LSC, Livingston 23 March, Calibration for the ALLEGRO resonant detector -- S2 and S4 Martin McHugh, Loyola University New Orleans.
Systematic effects in gravitational-wave data analysis
Array Response Functions with ArrayGUI
LIGO-G DM. Landry – Amaldi5 July 9, 2003 Laser Interferometer Gravitational Wave Observatory Monitoring LIGO Data During the S2 Science Run Michael.
1/25 Current results and future scenarios for gravitational wave’s stochastic background G. Cella – INFN sez. Pisa.
LIGO- G Z August 19, 2004Penn State University 1 Extracting Signals via Blind Deconvolution Tiffany Summerscales Penn State University.
3 May 2011 VESF DA schoolD. Verkindt 1 Didier Verkindt Virgo-LAPP CNRS - Université de Savoie VESF Data Analysis School Data Quality and vetos.
LIGO G Z Perspectives on detector networks, and noise Lee Samuel Finn Center for Gravitational Physics and Geometry, Penn State University.
Analysis of nonstationarity in LIGO S5 data using the NoiseFloorMon output A proposal for a seismic Data Quality flag. R. Stone for the LSC The Center.
The Analysis of Binary Inspiral Signals in LIGO Data Jun-Qi Guo Sept.25, 2007 Department of Physics and Astronomy The University of Mississippi LIGO Scientific.
LIGO-G D Global Diagnostics and Detector Characterization 9 th Marcel Grossmann Meeting Daniel Sigg, LIGO Hanford Observatory.
1 Proposed Control Room Figures of Merit for Pulsar Sensitivity Keith Riles (University of Michigan) LIGO Scientific Collaboration Meeting LIGO Livingston.
LIGO-G Z 3/15/01Penn State1 The datacondAPI Sam Finn, for the datacondAPI Team: W. Anderson, K. Blackburn, P. Charlton, P. Ehrens, A. Gonzalez,
LIGO- G Z Beyond the PSD: Discovering hidden nonlinearity Tiffany Summerscales Penn State University.
LIGO-G D Status of Stochastic Search with LIGO Vuk Mandic on behalf of LIGO Scientific Collaboration Caltech GWDAW-10, 12/15/05.
LIGO- G Z August 16, 2006August 2006 LSC Meeting - DetChar 1 Spectral Line Working Group Report Keith Thorne, Chair.
PlaneMon: Airplane Detection Monitor Evan Goetz & Keith Riles (University of Michigan) DCC: G Z.
LIGO-G Z Status of MNFTmon Soma Mukherjee +, Roberto Grosso* + University of Texas at Brownsville * University of Nuernberg, Germany LSC Detector.
S.Klimenko, LSC March, 2001 Update on Wavelet Compression Presented by S.Klimenko University of Florida l Outline Ø Wavelet compression concept E2 data.
LIGO-G Z Center for Gravitational Wave Physics, Penn State 1 RayleighMonitor: A Time-Frequency Gaussianity Monitor for the DMT Lee Samuel Finn,
LIGO- G Z August 17, 2005August LSC Meeting – ASIS Session 1 Recovering Hardware Injection Waveforms with Maximum Entropy Tiffany Summerscales.
S.Klimenko, LSC, August 2004, G Z BurstMon S.Klimenko, A.Sazonov University of Florida l motivation & documentation l description & results l.
Modal Analysis Dept. of Mechanical Engineering Yungpeng Wang 南臺科技大學 STUST.
S.Klimenko, March 2003, LSC Burst Analysis in Wavelet Domain for multiple interferometers LIGO-G Z Sergey Klimenko University of Florida l Analysis.
Stochastic Background Data Analysis Giancarlo Cella I.N.F.N. Pisa first ENTApP - GWA joint meeting Paris, January 23rd and 24th, 2006 Institute d'Astrophysique.
LIGO- G Z AJW, Caltech, LIGO Project1 A Coherence Function Statistic to Identify Coincident Bursts Surjeet Rajendran, Caltech SURF Alan Weinstein,
LIGO-G9900XX-00-M DMT Monitor Verification with Simulated Data John Zweizig LIGO/Caltech.
SymbolMeaning Frequency of the Input Signal Frequency of the Lock-in Reference Frequency of the Additional Sinusoidal Input Signal (or Coherent Noise)
LIGO-G E S2 Data Quality Investigation John Zweizig Caltech/LIGO.
LIGO-G v1 Searching for Gravitational Waves from the Coalescence of High Mass Black Hole Binaries 2014 LIGO SURF Summer Seminar August 21 st, 2014.
LIGO-G E Lazzarini - 60Hz CorrelationsLIGO Laboratory at Caltech 1 60 Hz Mains Correlations for the U.S. Power Grids The Aspen Winter Conference.
S.Klimenko, LSC meeting, March 2002 LineMonitor Sergey Klimenko University of Florida Other contributors: E.Daw (LSU), A.Sazonov(UF), J.Zweizig (Caltech)
Opening our eyes to QND technical issues (workshop and open forum) “It’ll be the blind leading the blind” - Stan Whitcomb “You can see a lot by looking”
Development of a Readout Scheme for High Frequency Gravitational Waves Jared Markowitz Mentors: Rick Savage Paul Schwinberg.
© Copyright Mistras Group Inc MISTRAS GROUP CONFIDENTIAL Noesis Noesis specializes in Acoustic Emission (AE) data analysis including real-time software.
SEARCH FOR INSPIRALING BINARIES S. V. Dhurandhar IUCAA Pune, India.
Overview Modern chip designs have multiple IP components with different process, voltage, temperature sensitivities Optimizing mix to different customer.
National Mathematics Day
Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband.
Bounding the strength of a Stochastic GW Background in LIGO’s S3 Data
Targeted Searches using Q Pipeline
Stochastic background search using LIGO Livingston and ALLEGRO
Loops CIS 40 – Introduction to Programming in Python
Line tracking methods used in LineMon
Search for gravitational waves from binary black hole mergers:
Update on LLO-ALLEGRO stochastic analysis
Environmental Monitoring: Coupling Function Calculator
M Ashley - LSC Meeting – LIGO Hanford, 12 Nov 2003
S2 Bilinear Couplings Study
Steve Penn (HWS) & Vijay Chickarmane (LSU)
LIGO Scientific Collaboration - University of Michigan
FEMAS Development - Progress
Presentation transcript:

LIG O HW S Introduction to Bicoherence Monitors: BicoViewer & BicoMon Steve Penn (HWS)

LIG O HW S LSC Meeting August 2004LIGO DCC G Z2 Why use BicoViewer? Noise Investigations »Step 1: Power Spectral Density (PSD) investigation, done in DTT –Tells you the frequency and power of the noise –If the noise is a “known” source, then you are done »Step 2: Coherence investigation, done in DTT –Tells you the phase correlation between two channels –This gives an indication of the physical coupling between these channel source »Step 3: Bicoherence investigation, done in BicoViewer –Tells you the phase correlation phase correlation at different frequencies, possibly different channels –Indicates the coupling either in the physical system or in the sensing

LIG O HW S LSC Meeting August 2004LIGO DCC G Z3 Statistics (1) “1D” Statistics: (2 nd Order Cumulants, 1 st Order Spectra) »Correlation: »Power Spectral Density: »Coherence: –Tells us power and phase coherence at a given frequency

LIG O HW S LSC Meeting August 2004LIGO DCC G Z4 Statistics (2) “2D” Statistics: (3rd Order Cumulants, 2nd Order Spectra) »Bicumulant: »Bispectral Density: »Bicoherence: –Tells us power and phase coherence at a coupled frequency

LIG O HW S LSC Meeting August 2004LIGO DCC G Z5 Why Higher Order Statistics? For a Gaussian process: For independent processes: Allows for isolation of nonGaussian processes »Visual check of frequency coupling and phase noise »Statistical test for the probability of gaussianity and linearity »Iterative process to reconstruct nongaussian signal from the higher order cumulants

LIG O HW S LSC Meeting August 2004LIGO DCC G Z6 BicoViewer (Foreground Monitor) Plots Bicoherence (auto- or cross-) & PSD’s of input channels Proper decimation, Optimized windowing, Vectorized FFT User selects: (Channels, Frequency Range, Frequency resolution, Data Span, Overlap) Outputs GIF files. Script to make video. Table of Current and New Parameters with Accuracy & Time Estimates Plot Countdown clock Text File Output Faster Smoothing Routine Heterodyning Strip Chart for Monitoring Bicoherence of certain ROI Output calculation parameters as configuration for BicoMon

LIG O HW S LSC Meeting August 2004LIGO DCC G Z7 Current Version

LIG O HW S LSC Meeting August 2004LIGO DCC G Z8 Current Version (2)

LIG O HW S LSC Meeting August 2004LIGO DCC G Z9 H1:LSC-AS_I movie

LIG O HW S LSC Meeting August 2004LIGO DCC G Z10 H1:LSC-AS_Q movie

LIG O HW S LSC Meeting August 2004LIGO DCC G Z11 Online Demo (requires X windows) On Fortress: > /export/home/spenn/BicoViewer new version soon in DMT

LIG O HW S LSC Meeting August 2004LIGO DCC G Z12 BicoMon: Current Version Monitor integrates bicoherence over specified frequency ROI Calculates bicoherence for multiple channel combinations Integrates bicoherence over multiple specified ROI Integrates bicoherence over entire unique area (Gaussianity) Trends Data and sends to DMTviewer. Included proper decimation with filtering rather than rebinning Tests for Operational State

LIG O HW S LSC Meeting August 2004LIGO DCC G Z C 2 H1:LSC-AS_Q16384 H1:SUS-ITMX_OPLEV_PERROR M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_ALL M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_2_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_10_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_38_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_50_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_2_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_10_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_38_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_50_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_2_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_10_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_38_ M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_50_ C 2 H1:LSC-AS_Q16384 H1:SUS-ITMY_OPLEV_PERROR M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_ALL M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_2_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_10_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_38_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_50_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_2_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_10_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_38_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_50_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_2_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_10_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_38_ M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_50_ C 1 H1:LSC-AS_Q M Bico:H1:AS_Q_ALL M Bico:H1:AS_Q_120_2_ M Bico:H1:AS_Q_120_10_ M Bico:H1:AS_Q_120_38_ Configuration File Calculation Parameters Measurement Parameters

LIG O HW S LSC Meeting August 2004LIGO DCC G Z14 Conclusions Bicoherence monitors could be a useful tool for analyzing data for glitches, gaussianity, upconversion, and chirps. We are now at sensitivity where up-converted data can be seen BicoMon operational. BicoViewer works (Beta Testers Needed). Beta Test Need: Now that the IFO is at/near a sensitivity to see bicoherence, we need people to use monitor and make bicoherence an analysis tool on par with PSDs or coherence.