Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov 13-14. 2007 1 XT-ADS Transient Analysis.

Slides:



Advertisements
Similar presentations
(1) Die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 0 | Transient Analysis for the EFIT 3-Zone Core P. Liu, X.-N. Chen,
Advertisements

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct EFIT (PB) - Design and Preliminary.
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Bologna, May 28-29, EFIT-Pb Transient Analysis.
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov EFIT Design and Transient.
INRNE-BAS MELCOR Pre -Test Calculation of Boil-off test at Quench facility 11th International QUENCH Workshop Forschungszentrum Karlsruhe (FZK), October.
Dynamic Response to Pulsed Beam Operation in Accelerator Driven Subcritical Reactors Ali Ahmad Supervisor: Dr Geoff Parks University Nuclear Technology.
Relevant Thermal-Hydraulic Aspects in the Design of the RRR A. Doval, C. Mazufri F.P. Moreno Bariloche, Rio Negro, Argentina.
DM1 – WP1.5 meeting Stockholm, May 22-23, First safety approach of the DHR system of XT-ADS B. Arien.
Jiří Duspiva Nuclear Research Institute Řež, plc. Nuclear Power and Safety Division Dept. of Reactor Technology 11 th International QUENCH Workshop Karlsruhe,
Preliminary T/H Analyses for EFIT-MgO/Pb Reactor Design WP1.5 Progress Meeting KTH / Stockholm, May 22-23, 2007 G. Bandini, P. Meloni, M. Polidori Italian.
EUROTRANS – DM1 RELAP5 Model Evaluation with SIMMER-III Code and Preliminary Transient Analysis for EFIT Reactor WP5.1 Progress Meeting KTH / Stockholm,
BARC IAEA Training Course/Workshop on Natural Circulation in Water Cooled Nuclear Power Plants, ICTP, Trieste, June 25-29,2007 Examples of Natural Circulation.
LEADER Project: Task 5.4 Analysis of Representative DBC Events of the ETDR with RELAP5 G. Bandini - ENEA/Bologna LEADER 5 th WP5 Meeting JRC-IET, Petten,
LEADER Project: Task 5.4 Analysis of Representative DBC Events of the ETDR with CATHARE G. Geffraye, D. Kadri – CEA/Grenoble G. Bandini - ENEA/Bologna.
Transmutation and ADS Safety EUROTRANS WP1.5 Meeting, Nov 27-28, Karlsruhe Simulation of EFIT Steam Generator Tube Rupture Accident (U-10) M. Flad, S.
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Temperature Limits for XT-ADS.
EUROTRANS DESIGN WP 1.5 Meeting May 22nd/23rd 2007 Stockholm, Sweden Recommendations for the MOX fuel conductivity and heat transfer correlations to be.
EUROTRANS WP 1.5 Meeting FZK – Karlsruhe, November 27-28, 2008 FPN-FISNUC / Bologna EUROTRANS – DM1 EFIT Transients Analysis with RELAP5, SIMMER-III and.
Framatome ANP IP-EUROTRANS Meeting WP 1.5 Progress in safety approach development TEE, March Sophie EHSTER.
1 EUROTRANS DM1 Safety Meeting, November, 2008, FZK, RFA FI6W-CT : Integrated Project on European Transmutation (EUROTRANS) CEA/DEN/DER.
Transmutation and ADS Safety Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Transient Analysis for EFIT (ENEA 384MWth 3-Zone core) Safety and.
EUROTRANS – DM1 Preliminary Transient Analysis for EFIT with RELAP5 and RELAP/PARCS Codes WP5.1 Progress Meeting Empresarios Agrupados - Madrid, November.
EUROTRANS: WP1.5 Technical meeting, Karlsruhe, November 27 – 28, XT-ADS DHR Conceptual Design L. Mansani
Transmutation and ADS Safety Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft EUROTRANS DM1-WP1.5 Mtg. Stockholm, May 22-23, 2007 Some Recent.
IP-Eurotrans DM1-WP1.5 meeting, Lyon, October 10-11, Gas Plenum in XT-ADS Fuel Rod V. Sobolev, B. Arien SCK·CEN, Boeretang 200, Mol, Belgium.
AREVA NP EUROTRANS WP1.5 Technical Meeting Task – ETD Safety approach Safety approach for XT-ADS: Deliverable 1.20 Lyon, October Sophie.
1 Safety studies for MYRRHA B. Arien, S. Heusdains, H. Aït Abderrahim on behalf of the MYRRHA Team and Support IP-Eurotrans Workshop DM1-WP1.5Brussels,
EUROTRANS - Helium cooled EFIT Probabilistic assessment of different DHR designs Karlsruhe, November Sophie EHSTER, Laurent VINCON.
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Karlsruhe, Nov 27-28, EFIT-Pb Transient Analysis.
WP1.5 Meeting, Lyon, October 10-11, 2006, P. Richard, J. F. Pignatel, G. Rimpault 1 Status of He-EFIT Design Richard – J. F Pignatel – G. Rimpault Pierre.
WP 1.5 Progress Meeting ENEA – Bologna, Italy, May 28-30, 2008 FPN-FISNUC / Bologna EUROTRANS – DM1 Analysis of EFIT Unprotected Accidental Transients.
Investigation into the Viability of a Passively Active Decay Heat Removal System In ALLEGRO Laura Carroll, Graduate Physicist Physics & Licensing Team,
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
Argonne National Laboratory 2007 RELAP5 International User’s Seminar
Thermal hydraulic analysis of ALFRED by RELAP5 code & by SIMMER code G. Barone, N. Forgione, A. Pesetti, R. Lo Frano CIRTEN Consorzio Interuniversitario.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Updated Thermal Performance of.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
LEADER, Task 5.5 ETDR Transient Analyses with SPECTRA Code LEADER Project JRC, Petten, February 26, 2013 M.M. Stempniewicz NRG-22694/
Analyses of representative DEC events of the ETDR
Study of a new high power spallation target concept
Lead Technology Task 6.2 Materials for mechanical pump for HLM reactors M. Tarantino, I. Di Piazza, P. Gaggini Work Package Meeting Karlsruhe, November.
Calorimeter Analysis Tasks, July 2014 Revision B January 22, 2015.
Apex Target Marco Oriunno, April 23, Design and fabrication by: Marco Oriunno, Dieter Walz, Jim McDonald, Clive Field, Douglas Higginbotham, and.
Completion of Water-Cooled Backup Study Eric Pitcher TAC-10 November 5, 2014.
Development of a RELAP5-3D thermal-hydraulic model for a Gas Cooled Fast Reactor D. Castelliti, C. Parisi, G. M. Galassi, N. Cerullo (San Piero A Grado.
EUROTRANS – DM1 ENEA Activities on EFIT Safety Analysis ENEA – FIS/NUC Bologna - Italy WP5.1 Progress Meeting Tractebel / Brussels, March 17, 2006 G. Bandini,
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
IAEA Meeting on INPRO Collaborative Project “Performance Assessment of Passive Gaseous Provisions (PGAP)” December, 2011, Vienna A.K. Nayak, PhD.
Safety Analysis Results of the DEC Transients of ALFRED LEADER Lead-cooled European Advanced DEmonstration Reactor G. Bandini (ENEA), E. Bubelis, M. Schikorr.
1 Kaspar Kööp, Marti Jeltsov Division of Nuclear Power Safety Royal Institute of Technology (KTH) Stockholm, Sweden LEADER 4 th WP5 MEETING, Karlsruhe.
30 th June 20111Enrico Da Riva, V. Rao Parametric study using Empirical Results June 30 th 2011 Bdg 298 Enrico Da Riva,Vinod Singh Rao CFD GTK.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
LEADER Project Analysis of Representative DBC Events of the ETDR with RELAP5 and CATHARE Giacomino Bandini - ENEA/Bologna Genevieve Geffraye – CEA/Grenoble.
Analysis of Representative DEC Events of the ETDR with RELAP5 LEADER Project: Task 5.5 G. Bandini - ENEA/Bologna LEADER 5 th WP5 Meeting JRC-IET, Petten,
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
KIT TOWN OFFICE OSTENDORFHAUS Karlsruhe, 21 st November 2012 CIRTEN Consorzio universitario per la ricerca tecnologica nucleare Antonio Cammi, Stefano.
Results of First Stage of VVER Rod Simulator Quench Tests 11th International QUENCH Workshop Forschungszentrum Karlsruhe October 25-27, 2005 Presented.
Institute of Safety Research Member Institution of the Scientific Association Gottfried Wilhelm Leibniz DYN3D/ATHLET AND ANSYS CFX CALCULATIONS OF THE.
Multi-Microhannel Cooling Model Silicon Micro-Cooling Element to be applied on a pixel detector of CERN (ALICE) / Parametric Study Footprint area: (6.0.
Italian National Agency for New Technologies, Energy and Environment Advanced Physics Technology Division Via Martiri di Monte Sole 4, Bologna, Italy.
EUROTRANS – DM1 Preliminary Transient Analysis for EFIT Design WP5.1 Progress Meeting AREVA / Lyon, October 10-11, 2006 G. Bandini, P. Meloni, M. Polidori.
Cryogenic scheme, pipes and valves dimensions U.Wagner CERN TE-CRG.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
Panel Discussion: Discussion on Trends in Multi-Physics Simulation
SAMPLE PROBLEM MATRA Input Preparation
The University of Missouri Research Reactor
Analysis of Reactivity Insertion Accidents for the NIST Research Reactor Before and After Fuel Conversion J.S. Baek, A. Cuadra, L-Y. Cheng, A.L. Hanson,
Egyptian Atomic Energy Authority (EAEA), Egypt
Presentation transcript:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS Transient Analysis M. Schikorr, E. Bubelis EUROTRANS: DM1 WP1.5 : “Safety” Madrid, November 2007

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Design Criteria for XT-ADS 2.XT-ADS design Data for Transient Analysis 3.Some XT-ADS results to the ULOF transient Topics:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Neutron Flux sufficiently high ( ~ 2.0E15 n/cm 2 /s ) to allow XT-ADS to operate as an irradiation facility (i.e. for MA sub-assembly testing). 2.Operate XT-ADS at k_eff ~ with several (8?) test rig positions. Design currently optimized by Task Force (Struwe). 3.Design core and primary system in such a manner to allow sufficient natural convection flow rate especially to sustain a ULOF transient for at least 30 minutes without „large number“ of pin failures (i.e. via gas blowdown. Note: this does not mean clad melting !!) 1.Some important XT-ADS Design Criteria:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Assure a sufficiently large natural convection flow rate ( > 25 % nominal flow) under ULOF conditions. This implies : 1.keep pressure drop across the core „low“ (~< 0.75 bar) by selecting an appropriate fuel pin / subassembly design 2.minimize pressure losses throughout the primary / DHR system such that total system pressure loss <~ 1.0 – 1.1 bar 3.assure a height differential between the core midplane and the heat sink midplane of at least ~ 2.00 m XT-ADS ULOF Design Criteria requires :

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Select an appropriate pin / sub-assembly design by optimizing the pin diameter, pin pitch, wrapper dimensions etc. 2.Minimize the number of grid-spacers and optimise design (reduce grid spacer thickness to a minimum: 0.25 mm from currently 0.50 mm) 3.Keep the length of the fuel pin low 4.Optimize inlet and outlet support structures to keep pressure drops small Keeping  P_core in the XT-ADS Design low:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Most current XT-ADS Design Data: 580mm Lower Gas Plenum 580

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Other XT-ADS Data Inputs: 580mm Lower Gas Plenum Current Grid Spacer Design : Proposed Grid Spacer Design:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS Nominal Conditions at BOC : Note: using Ushakov (Zhukov- bundle) instead of Subbotin will reduce clad temps by about 9 °C XT-ADS : Pin = 6.55mm OD T_in = 300 °C 4 Grid 0.50 mm

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS Nominal Conditions at EOC : Oxide Layer = 30 um At 1 [W/m/K] oxide layer thermal conductivity XT-ADS : Pin = 6.55mm OD T_in = 300 °C 4 Grid 0.50 mm At EOC (~ 100 MWd/kg peak burnup): Fission Gas Pressure in peak pin ~ 38.4 bar Degraded thermal fuel conductivity (Philiponneau)

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS : Pin = 6.55mm OD T_in = 300 °C No Oxide Layer XT-ADS ULOF-ss at BOC : 4 Grid 0.50mm thickness  H (core-HX) = 2.0 m  P_primsystem = 1.56 bar Conclusion: At BOC ULOFss Clad Failure Time of ~ 0.5 hrs for Peak Pin is acceptable !! Current Spacer design:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS ULOF-ss at EOC : XT-ADS : Pin = 6.55mm OD T_in = 300 °C Oxide Layer = 30 um 4 Grid 0.50mm thickness  H (core-HX) = 2.0 m  P_primsystem = 1.56 bar Conclusion: At EOC ULOFss Clad Failure Time of ~ 0.13 hrs for Peak Pin is somewhat less than the 0.5 hrs design goal!! Current Spacer design:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS : Pin = 6.55mm OD T_in = 300 °C No Oxide Layer XT-ADS ULOF-ss at BOC : 4 Grid 0.25mm thickness  H (core-HX) = 2.0 m  P_primsystem = bar Conclusion: At BOC ULOFss Clad Failure Time of ~ 45 hrs for Peak Pin Proposed Spacer design:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS ULOF-ss at EOC : XT-ADS : Pin = 6.55mm OD T_in = 300 °C Oxide Layer = 30 um 4 Grid 0.25mm thickness  H (core-HX) = 2.0 m  P_primsystem = bar Conclusion: At EOC ULOFss Clad Failure Time of ~ 9 hrs for Peak Pin is now ok !! Proposed Spacer design:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS Transient : ULOF Assumptions: 1.Pump Coast down charactersitics taken from Myhrra Report (Draft 2) using a pump rundown halftime = 3.8 sec 2.Assume a similiar flow transition characterisitics from pump coast down to natural convection as has been assumed for the PDS-XADS design Source: Myhrra Report – Draft 2 June 2005 ~3.8 sec

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Flow transition characterisitics from pump coast down to natural convection under ULOF conditions as has been assumed for the PDS-XADS design I believe that this XADS transition flow characterisitcs was experimentally valided in Italy (Brasemone) and RELAP was validated using this data TALL experimental data (LBE-loop, KTH)

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Benchmarking TRAC and SIM-ADS to TALL Natural Convection Transient TALL Natural Convection Transient Experimental data (LBE-loop, KTH) Source : W. Ma (KTH),et.al., E. Bubelis, P. Coddington (PSI) „TALL Experiments …..“ NED Reference to be completed

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS ULOF Transient Cases Analysed: 1.ULOF:BOC, Peak Pin, mm thickness 2.ULOF:EOC, Peak Pin, mm thickness, 30 um oxide 3.ULOF:BOC, Peak Pin, mm thickness 4.ULOF:EOC, Peak Pin, mm thickness, 30 um oxide

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Case 1 : ULOF, BOC, Peak Pin, mm thickness, no oxide Conclusion: For current design XT-ADS peak pin clad will fail 32 sec into the ULOF transient already under BOC conditions because of flow undershoot < 20 % nom. flow at 36 sec into transient even though the ULOF-ss limit of 30 min is attained after 60 sec into ULOF.

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Case 2 : ULOF, EOC, Peak Pin, mm thickness, 30 um oxide Conclusion: For current design XT-ADS peak pin clad will fail 32 sec into the ULOF transient under EOC conditions because of flow undershoot < 20 % nom. flow at 36 sec even though the ULOF-ss limit of ~20 min is attained after 60 sec into ULOF.

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Case 3 : ULOF, BOC, Peak Pin, mm thickness, no oxide Conclusion: For 0.25cm Spacer design XT-ADS clad will most likely survive without clad failure under BOC conditions even though clad failure time dropped down to ~ 80 sec about 36 sec into ULOF transient. Flow undershoot will recover sufficiently fast.

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Case 4 : ULOF, EOC, Peak Pin, mm thickness, 30 um oxide Conclusion: For 0.25cm Spacer design XT-ADS peak pin clad will however most likely fail under EOC conditions because clad failure time dropped down to ~ 0 sec about 36 sec into ULOF transient. Avg Pin clad will survive – see next figure.

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Case 4 : ULOF, EOC, Avg Pin, mm thickness, 30 um oxide Conclusion: For 0.25cm Spacer design XT-ADS avg pin clad will not fail under EOC conditions because clad failure time dropped down to only 800 sec about 36 sec into ULOF transient and thereafter recovers to several hours.

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Current Conclusions on XT-ADS ULOF Transient (1/2) : 1.)This transient is very sensitive to natural convection flow rate conditions and thus all plant and design parameters that influence this parameter. During the transient clad failure times can decrease to a few 10 seconds depending on the transitional flow dynamics (natural convection flow undershoot). 2.) The ULOF-ss (steady state) clad design limit condition of at least 30 min survival time are difficult to abide by under ULOF transient conditions for the current design even if the spacer design of 0.25mm thickness is adopted. Additional design measures are needed such as either decrease in primary system pressure drop or by increasing the elevation of the HX relative to the core above the current 2.0 m differential, or by other means (what are those ?).

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov Current Conclusions on XT-ADS ULOF Transient (2/2) : 3.) The XT-ADS core and primary system designs are currently still a moving target. The most recent design iteration proposal calls for a reduced secondary side pressure to 16 bar allowing for power level dependant core inlet temperature variations between 300°C and 200°C. This calls for a revised MHX modelling (2 phase flow as saturation temperature of 16 bar is 200°C). This implies that under norminal conditions – 300°C core inlet, the secondary side HX is mostly in the vapor state. Who has a 2 phase MHX model going and running stable at all plant conditions ???