Deadlock. Example Process 1 Process 2 Resource 1 Resource 2.

Slides:



Advertisements
Similar presentations
Chapter 7: Deadlocks.
Advertisements

Slide 10-1 Copyright © 2004 Pearson Education, Inc. Operating Systems: A Modern Perspective, Chapter 10.
Concurrency: Deadlock and Starvation Chapter 6. Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate.
Operating Systems Lecture Notes Deadlocks Matthew Dailey Some material © Silberschatz, Galvin, and Gagne, 2002.
Deadlock Prevention, Avoidance, and Detection.  The Deadlock problem The Deadlock problem  Conditions for deadlocks Conditions for deadlocks  Graph-theoretic.
6. Deadlocks 6.1 Deadlocks with Reusable and Consumable Resources
Chapter 7: Deadlocks.
Chapter 81 Deadlock is:  A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.  Example.
1 CSC 539: Operating Systems Structure and Design Spring 2005 Process deadlock  deadlock prevention  deadlock avoidance  deadlock detection  recovery.
© 2004, D. J. Foreman 1 Deadlock. © 2004, D. J. Foreman 2 Example  P1 requests most of real memory  Disk block mgr is swapped out ot make room for P1's.
10 Deadlock Example Process 1 Process 2 Resource 1 Resource 2 Process holds the resource Process requests the resource.
Deadlocks. 2 System Model There are non-shared computer resources –Maybe more than one instance –Printers, Semaphores, Tape drives, CPU Processes need.
Chapter 7: Deadlocks. 7.2 Chapter Objectives To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks.
02/19/2008CSCI 315 Operating Systems Design1 Deadlock Notice: The slides for this lecture have been largely based on those accompanying the textbook Operating.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 7: Deadlocks.
Deadlocks Gordon College Stephen Brinton. Deadlock Overview The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks.
What we will cover…  The Deadlock Problem  System Model  Deadlock Characterization  Methods for Handling Deadlocks  Deadlock Prevention  Deadlock.
Deadlock Characterization
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Deadlocks.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 7: Deadlocks.
Chapter 7 – Deadlock (Pgs 283 – 306). Overview  When a set of processes is prevented from completing because each is preventing the other from accessing.
Cosc 4740 Chapter 6, Part 4 Deadlocks. The Deadlock Problem A set of blocked processes each holding a resource and waiting to acquire a resource held.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 7: Deadlocks.
CS6502 Operating Systems - Dr. J. Garrido Deadlock – Part 2 (Lecture 7a) CS5002 Operating Systems Dr. Jose M. Garrido.
Dr. Kalpakis CMSC 421, Operating Systems Deadlocks.
Chapter 7 Deadlocks Page 2 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance.
Slide 10-1 Copyright © 2004 Pearson Education, Inc. Operating Systems: A Modern Perspective, Chapter 10.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill Technology Education Lecture 7 Operating Systems.
CS307 Operating Systems Deadlocks Fan Wu Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2012.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 6 Deadlocks Slide 1 Chapter 6 Deadlocks.
Ch 3 –What is a deadlock ? –Conditions Hold and Wait Mutual Exclusion Non Preemption Circular Wait –Deadlock Models Single Unit Request AND Request OR.
Deadlocks Copyright ©: University of Illinois CS 241 Staff1.
Slide 10-1 Copyright © 2004 Pearson Education, Inc. Operating Systems: A Modern Perspective, Chapter 10.
Silberschatz, Galvin and Gagne ©2009 Edited by Khoury, 2015 Operating System Concepts – 9 th Edition, Chapter 7: Deadlocks.
Deadlock A deadlock is a situation wherein two or more competing actions are waiting for the other to finish, and thus neither ever does. Example : “When.
Deadlock. Stepping on each other’s feet - I Thread T 1 b1:= allocate(); b2:= allocate(); …… release(b1); release(b2); Thread T 2 b1:= allocate(); b2:=
Outline Objective for today: Formal treatment of deadlock.
Chapter 10 Deadlock. What is Deadlock? Two or more entities need a resource to make progress, but will never get that resource Examples from everyday.
ICS Deadlocks 6.1 Deadlocks with Reusable and Consumable Resources 6.2 Approaches to the Deadlock Problem 6.3 A System Model –Resource Graphs –State.
Slide 10-1 Copyright © 2004 Pearson Education, Inc. Operating Systems: A Modern Perspective, Chapter 10.
Lecture 6 Deadlock 1. Deadlock and Starvation Let S and Q be two semaphores initialized to 1 P 0 P 1 wait (S); wait (Q); wait (Q); wait (S);. signal (S);
2 Program Process Abstract Computing Environment File Manager Memory Manager Device Manager Protection Deadlock Synchronization Process Description Process.
Deadlock. Examples You can't get a job without experience; you can't get experience without a job. A set of blocked processes each holding a resource.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 7: Deadlocks.
Chapter 7: Deadlocks.
OPERATING SYSTEM CONCEPTS AND PRACTISE
Process Management Deadlocks.
CSSE 332 Operating Systems Rose-Hulman Institute of Technology
Chapter 7: Deadlocks.
Ch 3 What is a deadlock ? Conditions Deadlock Models Hold and Wait
Outline Objective for today: Formal treatment of deadlock. Bring Zax
Concurrency: Deadlock and Starvation
ITEC 202 Operating Systems
Outline Announcement Deadlock Deadlock definition - review
Deadlocks Definition A set of processes is in a Deadlock state when every process in the set is waiting for an event that can only be caused by another.
Deadlock B.Ramamurthy CSE421 1/11/2019 B.Ramamurthy.
CSc 552 Advanced Unix Process deadlock deadlock prevention
Deadlock.
Deadlock B.Ramamurthy CSE421 2/23/2019 B.Ramamurthy.
DEADLOCK.
Deadlock.
Deadlock © 2004, D. J. Foreman.
Deadlock B.Ramamurthy CSE421 4/23/2019 B.Ramamurthy.
Deadlock B.Ramamurthy CSE421 5/1/2019 B.Ramamurthy.
Deadlock.
Deadlock.
CSE 380 Lecture Note 12 Insup Lee
Chapter 7: Deadlocks.
Deadlock B.Ramamurthy CSE421 8/28/2019 B.Ramamurthy.
Deadlock B.Ramamurthy CSE421 9/3/2019 B.Ramamurthy.
Presentation transcript:

Deadlock

Example Process 1 Process 2 Resource 1 Resource 2

Example Process 1 Process 2 Process 3 Resource 1 Resource 2 Resource 3

A Model P = {p 1, p 2, …, p n } be a set of processes R = {R 1, R 2, …, R m } be a set of resources c j = number of units of R j in the system S = {S 0, S 1, …} be a set of states representing the assignment of R j to p i –State changes when processes take action –This allows us to identify a deadlock situation in the operating system

State Transitions The system changes state because of the action of some process, p i There are three pertinent actions: –Request (“r i ”): request one or more units of a resource –Allocation (“a i ”): All outstanding requests from a process for a given resource are satisfied –Deallocation (“d i ”): The process releases units of a resource SjSj SkSk xixi

Properties of States Want to define deadlock in terms of patterns of transitions Define: p i is blocked in S j if p i cannot cause a transition out of S j SjSj r3r3 a1a1 r1r1 p 2 is blocked in S j

Properties of States (cont) If p i is blocked in S j, and will also be blocked in every S k reachable from S j, then p i is deadlocked S j is called a deadlock state

Example ra d S0S0 S1S1 S2S2 S3S3 S4S4 ra d One process, two units of one resource Can request one unit at a time

Extension of Example r0r0 a0a0 d0d0 S 00 S 10 S 20 S 30 S 40 r0r0 a0a0 d0d0 r0r0 a0a0 d0d0 S 01 S 11 S 21 S 31 S 41 r0r0 a0a0 d0d0 r0r0 a0a0 d0d0 S 02 S 12 S 22 S 32 r0r0 r0r0 a0a0 d0d0 S 03 S 13 S 23 S 33 r0r0 S 04 S 14 r0r0 r1r1 r1r1 r1r1 r1r1 r1r1 r1r1 r1r1 r1r1 a1a1 a1a1 a1a1 a1a1 a1a1 a1a1 d1d1 d1d1 d1d1 d1d1 d1d1 d1d1 r1r1

Addressing Deadlock Prevention: Design the system so that deadlock is impossible Avoidance: Construct a model of system states, then choose a strategy that will not allow the system to go to a deadlock state Detection & Recovery: Check for deadlock (periodically or sporadically), then recover Manual intervention: Have the operator reboot the machine if it seems too slow

Prevention Necessary conditions for deadlock –Mutual exclusion –Hold and wait –Circular waiting –No preemption Ensure that at least one of the necessary conditions is false at all times –Mutual exclusion must hold at all times

Hold and Wait Need to be sure a process does not hold one resource while requesting another Approach 1: Force a process to request all resources it needs at one time Approach 2: If a process needs to acquire a new resource, it must first release all resources it holds, then reacquire all it needs What does this say about state transition diagrams?

Circular Wait Have a situation in which there are K processes holding units of K resources RP RP P holds R P requests R RiRi PiPi

Circular Wait (cont) There is a cycle in the graph of processes and resources Choose a resource request strategy by which no cycle will be introduced Total order on all resources, then can only ask for R j if R i < R j for all R i the process is currently holding

Circular Wait (cont) There is a cycle in the graph of processes and resources Choose a resource request strategy by which no cycle will be introduced Total order on all resources, then can only ask for R j if R i < R j for all R i the process is currently holding This is how we noticed the easy solution for the dining philosophers

Allowing Preemption Allow a process to time-out on a blocked request -- withdrawing the request if it fails SiSi ruru dvdv ruru SjSj SkSk wuwu

Avoidance Define a model of system states, then choose a strategy that will guarantee that the system will not go to a deadlock state Requires extra information, e.g., the maximum claim for each process Allows resource manager to see the worst case that could happen, then to allow transitions based on that knowledge

Safe vs Unsafe States Safe state: one in which the system can assure that any sequence of subsequent transitions leads back to the initial state –Even if all exercise their maximum claim, there is an allocation strategy by which all claims can be met Unsafe state: one in which the system cannot guarantee that the system will transition back to the initial state –Unsafe state can lead to a deadlock state if too many processes exercise their maximum claim at once

More on Safe & Unsafe States Normal Execution Request Max Claim Execute, then release No Yes Likely to be in a safe state Probability of being in unsafe state increases

More on Safe & Unsafe States Normal Execution Request Max Claim Execute, then release No Yes Suppose all processes take “yes” branch Avoidance strategy is to allow this to happen, yet still be safe

More on Safe & Unsafe States I Safe States Unsafe States Deadlock States Disallow

Banker’s Algorithm Let maxc[i, j] be the maximum claim for R j by p i Let alloc[i, j] be the number of units of R j held by p i Can always compute –avail[j] = c j -  0  i  n alloc[i,j] –Then number of available units of R j Should be able to determine if the state is safe or not using this info

Banker’s Algorithm Copy the alloc[i,j] table to alloc’[i,j] Given C, maxc and alloc’, compute avail vector Find p i : maxc[i,j] - alloc’[i,j]  avail[j] for 0  j < m and 0  i < n. –If no such p i exists, the state is unsafe –If alloc’[i,j] is 0 for all i and j, the state is safe Set alloc’[i,j] to 0; deallocate all resources held by p i ; go to Step 2

Example ProcessR 0 R 1 R 2 R 3 p p p p p Maximum Claim ProcessR 0 R 1 R 2 R 3 p p p p p Sum7375 Allocated Resources C = Compute total allocated Determine available units avail = = Can anyone’s maxc be met? maxc[2,0]-alloc’[2,0] = 5-4 = 1  1 = avail[0] maxc[2,1]-alloc’[2,1] = 1-0 = 1  2 = avail[1] maxc[2,2]-alloc’[2,2] = 0-0 = 0  2 = avail[2] maxc[2,3]-alloc’[2,3] = 5-3 = 2  2 = avail[3] P 2 can exercise max claim avail[0] = avail[0]+alloc’[2,0] = 1+4 = 5 avail[1] = avail[1]+alloc’[2,1] = 2+0 = 2 avail[2] = avail[2]+alloc’[2,2] = 2+0 = 2 avail[3] = avail[3]+alloc’[2,3] = 2+3 = 5

Example ProcessR 0 R 1 R 2 R 3 p p p p p Maximum Claim ProcessR 0 R 1 R 2 R 3 p p p p p Sum3372 Allocated Resources C = Compute total allocated Determine available units avail = = Can anyone’s maxc be met? maxc[4,0]-alloc’[4,0] = 5-1 = 4  5 = avail[0] maxc[4,1]-alloc’[4,1] = 0-0 = 0  2 = avail[1] maxc[4,2]-alloc’[4,2] = 3-3 = 0  2 = avail[2] maxc[4,3]-alloc’[4,3] = 3-0 = 3  5 = avail[3] P 4 can exercise max claim avail[0] = avail[0]+alloc’[4,0] = 5+1 = 6 avail[1] = avail[1]+alloc’[4,1] = 2+0 = 2 avail[2] = avail[2]+alloc’[4,2] = 2+3 = 5 avail[3] = avail[3]+alloc’[4,3] = 5+0 = 5

Example ProcessR 0 R 1 R 2 R 3 p p p p p Maximum Claim ProcessR 0 R 1 R 2 R 3 p p p p p Sum2142 Allocated Resources C = Compute total allocated Determine available units avail = = Can anyone’s maxc be met? (Yes, any of them can)

Detection & Recovery Check for deadlock (periodically or sporadically), then recover Can be far more aggressive with allocation No maximum claim, no safe/unsafe states Differentiate between –Serially reusable resources: A unit must be allocated before being released –Consumable resources: Never release acquired resources; resource count is number currently available

Reusable Resource Graphs (RRGs) Micro model to describe a single state Nodes = {p 0, p 1, …, p n }  {R 1, R 2, …, R m } Edges connect p i to R j, or R j to p i –(p i, R j ) is a request edge for one unit of R j –(R j, p i ) is an assignment edge of one unit of R j For each R j there is a count, c j of units Rj Number of units of R j allocated to p i plus the number requested by p i cannot exceed c j

Example P holds one unit of R A Deadlock State P requests one unit of R R R p p

Example Not a Deadlock StateNo Cycle in the Graph

State Transitions due to Request In S j, p i is allowed to request q  c h units of R h, provided p i has no outstanding requests. S j  S k, where the RRG for S k is derived from S j by adding q request edges from p i to R h RhRh pipi RhRh pipi State S j State S k p i request q units of R h q edges

State Transition for Acquire In S j, p i is allowed to acquire units of R h, iff there is (p i, R h ) in the graph, and all can be satisfied. S j  S k, where the RRG for S k is derived from S j by changing each request edge to an assignment edge. RhRh pipi RhRh pipi State S j State S k p i acquires units of R h

State Transition for Release In S j, p i is allowed to release units of R h, iff there is (R h, p i ) in the graph, and there is no request edge from p i. S j  S k, where the RRG for S k is derived from S j by deleting all assignment edges. RhRh pipi RhRh pipi State S j State S k p i releases units of R h

Example p0p0 p1p1 S 00

Example p0p0 p1p1 p0p0 p1p1 S 00 S 01

Example p0p0 p1p1 p0p0 p0p0 p1p1 p1p1 S 00 S 01 S 11

Example p0p0 p1p1 p0p0 p0p0 p0p0 p1p1 p1p1 p1p1 S 00 S 01 S 11 S 21

Example p0p0 p1p1 p0p0 p0p0 p0p0 p0p0 p1p1 p1p1 p1p1 p1p1 S 00 S 01 S 11 S 21 S 22

Example p0p0 p1p1 p0p0 p0p0 p0p0 p0p0 p0p0 p1p1 p1p1 p1p1 p1p1 p1p1 S 00 S 01 S 11 S 21 S 22 S 33...

Graph Reduction Deadlock state if there is no sequence of transitions unblocking every process A RRG represents a state; can analyze the RRG to determine if there is a sequence A graph reduction represents the (optimal) action of an unblocked process. Can reduce by p i if –p i is not blocked –p i has no request edges, and there are (R j, p i ) in the RRG

Graph Reduction (cont) Transforms RRG to another RRG with all assignment edges into p i removed Represents p i releasing the resources it holds pipi pipi Reducing by p i

Graph Reduction (cont) A RRG is completely reducible if there a sequence of reductions that leads to a RRG with no edges A state is a deadlock state if and only if the RRG is not completely reducible.

Example RRG p0p0 p1p1 p2p2 p0p0 p1p1 p2p2 p0p0 p1p1 p2p2 p0p0 p1p1 p2p2

p0p0 p1p1 p2p2

Consumable Resource Graphs (CRGs) Number of units varies, have producers/consumers Nodes = {p 0, p 1, …, p n }  {R 1, R 2, …, R m } Edges connect p i to R j, or R j to p i –(p i, R j ) is a request edge for one unit of R j –(R j, p i ) is an producer edge (must have at least one producer for each R j ) For each R j there is a count, w j of units R j

State Transitions due to Request In S j, p i is allowed to request any number of units of R h, provided p i has no outstanding requests. S j  S k, where the RRG for S k is derived from Sj by adding q request edges from p i to R h RhRh pipi RhRh pipi State S j State S k p i request q units of R h q edges

State Transition for Acquire In S j, p i is allowed to acquire units of R h, iff there is (p i, R h ) in the graph, and all can be satisfied. S j  S k, where the RRG for S k is derived from Sj by deleting each request edge and decrementing w h. RhRh pipi RhRh pipi State S j State S k p i acquires units of R h

State Transition for Release In S j, p i is allowed to release units of R h, iff there is (R h, p i ) in the graph, and there is no request edge from p i. S j  S k, where the RRG for S k is derived from S j by incrementing w h. RhRh pipi RhRh pipi State S j State S k p i releases 2 units of R h

Example p0p0 p1p1 p0p0 p1p1 p0p0 p1p1 p0p0 p1p1 p0p0 p1p1

Deadlock Detection May have a CRG that is not completely reducible, but it is not a deadlock state For each process: –Find at least one sequence which leaves each process unblocked. There may be different sequences for different processes -- not necessarily an efficient approach

Deadlock Detection May have a CRG that is not completely reducible, but it is not a deadlock state Only need to find sequences, which leave each process unblocked. p0p0 p1p1

Deadlock Detection May have a CRG that is not completely reducible, but it is not a deadlock state Only need to find a set of sequences, which leaves each process unblocked.

General Resource Graphs Have consumable and reusable resources Apply consumable reductions to consumables, and reusable reductions to reusables See Figure 10.29

GRG Example (Fig 10.29) Reusable Consumable p0p0 R2R2 R1R1 R0R0 p3p3 p2p2 p1p1 Not in Fig 10.29

GRG Example (Fig 10.29) Reusable Consumable p0p0 R2R2 R1R1 R0R0 p3p3 p2p2 p1p1 Reduce by p 3

GRG Example (Fig 10.29) Reusable Consumable p0p0 R2R2 R1R1 R0R0 p3p3 p2p2 p1p1 Reduce by p 0 

Recovery No magic here –Choose a blocked resource –Preempt it (releasing its resources) –Run the detection algorithm –Iterate if until the state is not a deadlock state