The Spectrum of Markarian 421 Above 100 GeV with STACEE Jennifer Carson UCLA / Stanford Linear Accelerator Center February 2006 100 MeV 1 GeV 10 GeV 100.

Slides:



Advertisements
Similar presentations
A Multi - wavelength Study of Blazars with WIYN- VERITAS-IceCube Kirsten L. Larson The College of Wooster Advisor: Teresa Montaruli University of Madison-Wisconsin.
Advertisements

OBSERVATIONS OF AGNs USING PACT (Pachmarhi Array of Cherenkov Telescopes) Debanjan Bose (On behalf of PACT collaboration) “The Multi-Messenger Approach.
High-energy particle acceleration in the shell of a supernova remnant F.A. Aharonian et al (the HESS Collaboration) Nature 432, 75 (2004) Nuclear Physics.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Observations of the AGN 1ES with the MAGIC telescope The MAGIC Telescope 1ES Results from the observations Conclusion The MAGIC Telescope.
Mathieu de Naurois, H.E.S.S.High Energy Phenomena in the Galacic Center H.E.S.S. Observations of the Galactic Center  The H.E.S.S. Instrument.
Los Alamos National Laboratory Adelaide, Australia. December 2006 Gus Sinnis Synoptic TeV Telescopes Results from Milagro Plans for HAWC.
MAGIC TeV blazars and Extragalactic Background Light Daniel Mazin on behalf of the MAGIC collaboration Max-Planck-Institut für Physik, Munich.
Gamma-Ray Astronomy Call no Assoc. Prof. Markus Böttcher Clippinger # 339 Phone:
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Gus Sinnis HAWC Review December 2007 Milagro a TeV Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory.
Astrophysics around 100 GeV with STACEE David A. Williams University of California, Santa Cruz representing The STACEE Collaboration L.M.Boone, 1 D.Bramel,
The Transient Universe: AY 250 Spring 2007 New High Energy Telescopes Geoff Bower.
Observations of LBLs with STACEE Reshmi Mukherjee, Barnard College, Columbia University, New York Solar Tower Atmospheric Cherenkov Effect Experiment Air.
Jamie Holder School of Physics and Astronomy, University of Leeds, U.K Optical SETI at Leeds Using Cherenkov Light Buckets as Optical SETI Detectors RAS.
Julie McEnery1 GLAST: Multiwavelength Science with a New Mission Julie Mc Enery Gamma-ray Large Area Space Telescope.
HAWC Gus Sinnis VHE Workshop UCLA October, 2005 HAWC: A Next Generation Wide-Field VHE Gamma-Ray Telescope.
1 Gamma-Ray Astronomy with GLAST May 24, 2008 Toby Burnett WALTA meeting.
Gamma-ray Astrophysics Pulsar GRB AGN SNR Radio Galaxy The very high energy  -ray sky NEPPSR 25 Aug Guy Blaylock U. of Massachusetts Many thanks.
HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Julie McEnery GLAST Science Lunch Milagro: A Wide Field of View Gamma-Ray Telescope Julie McEnery.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
The role of GLAST in multiwavelength observations of bright TeV blazars D. Paneque J.Chiang, B. Giebels, V. Lonjou, B.Lott,
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
Incontri di Fisica delle Alte Energie IFAE 2006 Pavia Vincenzo Vitale Recent Results in Gamma Ray Astronomy with IACTs.
Gus Sinnis RICAP, Rome June 2007 High Altitude Water Cherenkov Telescope  Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration.
Milagro Gus Sinnis Milagro NSF Review July 18-19, 2005 Milagro: A Synoptic VHE Gamma-Ray Telescope Gus Sinnis Los Alamos National Laboratory.
Long-term monitor on Mrk 421 using ARGO-YBJ experiment S.Z Chen (IHEP/CAS/China, On behalf of the ARGO-YBJ collaboration  1. Introduction.
Moriond 2001Jordan GoodmanMilagro Collaboration The Milagro Gamma Ray Observatory The Physics of Milagro Milagrito –Mrk 501 –GRB a Milagro –Description.
Recent TeV Observations of Blazars & Connections to GLAST Frank Krennrich Iowa State University VERITAS Collaboration GSFC, October 24, 2002 AGN.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Cosmology with Ground-Based Cherenkov Telescopes Wei Cui (Purdue University)
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
CTA The next generation ultimate gamma ray observatory M. Teshima Max-Planck-Institute for Physics.
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut) for MAGIC collaboration MAGIC.
Blazars: VLBA and GLAST Glenn Piner Whittier College.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
A Catalog of Candidate High-redshift Blazars for GLAST
Observations of TeV blazars seem to be well explained by leptonic synchrotron inverse-Compton models, but there may be an hadronic mechanism involved as.
Pulsars: The radio/gamma-ray Connection Prospects for pulsar studies with AGILE and GLAST Synergy with radio telescopes –Timing and follow-up –Radio vs.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
The Spectrum of Markarian 421 Above 100 GeV with STACEE
1st page of proposal with 2 pictures and institution list 1.
Diffuse Emission and Unidentified Sources
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
05/02/031 Next Generation Ground- based  -ray Telescopes Frank Krennrich April,
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
Aous Abdo Ground-based Gamma-ray Astronomy: Towards the Future. Santa Fe, NM May 11–12, 2006 Detection of Tev  -rays from the Cygnus Region with Milagro.
Introduction Active galactic nuclei (AGN) are among the most interesting sources of gamma-rays. At the highest energies, blazars are the most luminous.
Markarian 421 with MAGIC telescope Daniel Mazin for the MAGIC Collaboration Max-Planck-Institut für Physik, München
Detecting Air Showers on the Ground
MAGIC Telescopes - Status and Results 2009/ Isabel Braun Institute for Particle Physics, ETH Zürich for the MAGIC collaboration CHIPP Plenary Meeting.
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
The end of the electromagnetic spectrum
Gus Sinnis RICAP, Rome June 2007 The Milagro Observatory: Recent Results & Future Plans Gus Sinnis Los Alamos National Laboratory for the Milagro Collaboration.
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
TeV Gamma Ray Astrophysics Wei Cui Department of Physics Purdue University.
Tobias Jogler Max-Planck Institut für Physik IMPRS YSW Ringberg 2007 VHE emission from binary systems Outline Binary systems Microquasar Pulsar binaries.
Gamma Rays from the Radio Galaxy M87
Observation of Pulsars and Plerions with MAGIC
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Calibrating Atmospheric Cherenkov Telescopes with the LAT
Presentation transcript:

The Spectrum of Markarian 421 Above 100 GeV with STACEE Jennifer Carson UCLA / Stanford Linear Accelerator Center February MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV 1 MeV Space-based Ground-based

Outline I.Science goal for  -ray detections from active galaxies Understanding particle acceleration II. Brief overview of VHE gamma-ray astronomy III.Ground-based detection techniques Atmospheric Cherenkov technique Imaging vs. wavefront sampling IV. STACEE V. Markarian 421 First STACEE spectrum Detection of high-energy peak? VI. Prospects for the future

Blazars bright core  3% optical polarization strong multi-wavelength variability Radio-loud AGN viewed at small angles to the jet axis

Blazars bright core  3% optical polarization strong multi-wavelength variability Double-peaked SED: synchrotron emission + ? Radio-loud AGN viewed at small angles to the jet axis What physical processes produce the high-energy emission? Maraschi et al eV (IR)1 keV (X-ray)1 MeV eV (radio) 1 GeV synchrotron ?

Blazar High-Energy Emission Models Is the beam particle an e - or a proton?

Blazar High-Energy Emission Models Leptonic models: Inverse-Compton scattering off accelerated electrons Synchrotron self-Compton and/or External radiation Compton Is the beam particle an e - or a proton?

Blazar High-Energy Emission Models Leptonic models: Inverse-Compton scattering off accelerated electrons Synchrotron self-Compton and/or External radiation Compton Hadronic models: Accelerated protons Gamma rays from pion decay or Synchroton gamma-ray photons Is the beam particle an e - or a proton?

Blazar High-Energy Emission Models Leptonic models: Inverse-Compton scattering off accelerated electrons Synchrotron self-Compton and/or External radiation Compton Hadronic models: Accelerated protons Gamma rays from pion decay or Synchroton gamma-ray photons Gamma-ray observations around 100 GeV can distinguish between models Is the beam particle an e - or a proton?

Exploring the Gamma-ray Spectrum Atm. Cherenkov Single Dish Imaging Compton Gamma Ray Observatory 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV Energy 1 MeV Atm. Cherenkov Wavefront Sampling Air shower arrays GLAST Atm. Cherenkov Wavefront Sampling Atm. Cherenkov Imaging Arrays Past Present/Future

Atmospheric Cherenkov Technique   ray  ~ 1.5 o e+e+ e+e+ e+e+  e-e- e-e- … e+e+

Single-dish Imaging Telescopes   ray  ~ 1.5 o Whipple 10-meter

Wavefront Sampling Technique   ray  ~ 1.5 o

Wavefront Sampling Technique   ray  ~ 1.5 o

Exploring the Gamma-ray Spectrum Atm. Cherenkov Single Dish Imaging Compton Gamma Ray Observatory 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV Energy 1 MeV Atm. Cherenkov Wavefront Sampling Air shower arrays GLAST Atm. Cherenkov Wavefront Sampling Atm. Cherenkov Imaging Arrays Whipple 10-meter Past Present/Future

Exploring the Gamma-ray Spectrum Atm. Cherenkov Single Dish Imaging 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV Energy 1 MeV Atm. Cherenkov Wavefront Sampling Air shower arrays GLAST Atm. Cherenkov Wavefront Sampling Atm. Cherenkov Imaging Arrays Whipple 10-meter STACEE CELESTE

Exploring the Gamma-ray Spectrum Atm. Cherenkov Single Dish Imaging 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV Energy 1 MeV Atm. Cherenkov Wavefront Sampling Air shower arrays GLAST Atm. Cherenkov Wavefront Sampling Atm. Cherenkov Imaging Arrays Present/Future STACEE

Exploring the Gamma-ray Spectrum 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV Energy 1 MeV GLAST Atm. Cherenkov Wavefront Sampling Atm. Cherenkov Imaging Arrays HESS VERITAS Present/Future STACEE

The High-Energy Gamma Ray Sky 1995  3 sources Mrk421 Mrk501 Crab R.A.Ong Aug 2005 Pulsar Nebula SNR AGN Other, UNID (2) (1) (0)

The High-Energy Gamma Ray Sky 2004  12 sources Mrk421 H1426 Mrk501 1ES1959 1ES 2344 PKS 2155 Cas A RXJ 1713 CrabTeV 2032 M87 GC R.A.Ong Aug 2005 Pulsar Nebula SNR AGN Other, UNID (7) (1) (2) (1,1)

The High-Energy Gamma Ray Sky 2005  31 sources! Mrk421 H1426 Mrk501 1ES1959 1ES 2344 PKS 2155 Cas A RXJ 1713 CrabTeV 2032 M87 PKS 2005 PSR B1259 RXJ 0852 MSH SNR G0.9 HessJ1303 GC R.A.Ong Aug 2005 Pulsar Nebula SNR AGN Other, UNID H2356 1ES ES 1101 LS 5039 Vela X add. sources in galactic plane. Cygnus Diffuse (11) (4+2) (3+4) (3,3+1)

Wavefront Sampling Detectors STACEE & CELESTE e+e+ e+e+ e+e+  e-e- e-e- … e+e+ Cherenkov light intensity on ground  energy of gamma ray Cherenkov pulse arrival times at heliostats  direction of source

STACEE 64 heliostats 5 secondary mirrors & 64 PMTs National Solar Thermal Test Facility Albuquerque, NM Solar Tower Atmospheric Cherenkov Effect Experiment

STACEE 64 heliostats 5 secondary mirrors & 64 PMTs National Solar Thermal Test Facility Albuquerque, NM Solar Tower Atmospheric Cherenkov Effect Experiment PMT 4 PEs: ~10 MHz Two-level trigger system (24 ns window): - cluster: ~10 kHz - array: ~7 Hz 1-GHz FADCs digitize each Cherenkov pulse

STACEE Advantages / Disadvantages 2-level trigger system  good hardware rejection of hadrons GHz FADCs  pulse shape information Large mirror area (64  37m 2 )  low energy threshold E thresh = 165 GeV

STACEE Advantages / Disadvantages 2-level trigger system  good hardware rejection of hadrons GHz FADCs  pulse shape information Large mirror area (64  37m 2 )  low energy threshold But… Limited off-line cosmic ray rejection  limited sensitivity: 1.4  /hour on the Crab Nebula Compare to Whipple sensitivity: 3  /hour above 300 GeV E thresh = 165 GeV

STACEE Data Observing Strategy: Equal-time background observations for every source observation (1-hour “pairs”) Cuts for data quality Correction for unequal NSB levels Cosmic ray background rejection Analysis: Significance/flux determination

Energy Reconstruction Idea Utilize two properties of gamma-ray showers: 1.Linear correlation: Cherenkov intensity and gamma-ray energy 2.Uniform intensity over shower area 200 GeV gamma ray500 GeV proton

New method to find energies of gamma rays from STACEE data: 1. Reconstruct Cherenkov light distribution on the ground from PMT charges 2. Reconstruct energy from spatial distribution of light Energy Reconstruction Method Results: fractional errors < 10% energy resolution ~25-35%

STACEE Nearby: z = 0.03 First TeV extragalactic source detected ( Punch et al ) Well-studied at all wavelengths except GeV Inverse-Compton scattering is favored High-energy peak expected around 100 GeV Only one previous spectral measurement at ~100 GeV ( Piron et al ) Markarian 421 Blazejowski et al Krawczynski et al log (Energy/eV) log (E 2 dN/dE / erg cm -2 s -1 ) ? STACEE

STACEE Detection of Mkn 421 Pairwise distribution of  Observed by STACEE January – May hours on-source + equal time in background observations N on – N off = 2843 gamma-ray events 5.8  detection 5.52  0.95 gamma rays per minute Energy threshold ~198 GeV for  = 1.8 E th = 198 GeV  = 1.8

Rate (photons s -1 GeV -1 ) A eff (E) (m 2 ) Energy (GeV) Spectral Analysis of Mkn 421 Gamma-ray rate (photons s -1 GeV -1 ) Effective area (m 2 ) Six energy bins between 130 GeV and 2 TeV Find gamma-ray excess in each bin Convert to differential flux with effective area curve Energy (GeV)

Spectral Analysis of Mkn 421  = 1.8  0.3 stat First STACEE spectrum

Spectral Analysis of Mkn 421  = 1.8  0.3 stat First STACEE spectrum Flat SED

2004 Multiwavelength Campaign JanuaryFebruaryMarchApril TeV X-ray PCA data courtesy of W. Cui, Blazejowski et al. 2005

2004 Multiwavelength Campaign JanuaryFebruaryMarchApril TeV X-ray STACEE observations PCA data courtesy of W. Cui, Blazejowski et al STACEE coverage: 40% of MW nights ~90% of STACEE data taken during MW nights STACEE combines low and high flux states

Multiwavelength Results Blazejowski et al. 2005

Multiwavelength Results STACEE region Blazejowski et al. 2005

STACEE + Whipple Results

Science Interpretation STACEE’s first energy bin is ~120 GeV below Whipple’s. STACEE result:  is consistent with a flat or rising SED.  suggests that the high-energy peak is above ~200 GeV.  slghtly is inconsistent with most past IC modeling. Combined STACEE/Whipple data suggest that the peak is around GeV. SED peak reflects peak of electron energy distribution.

Prospects for the Future STACEE will operate for another year Air Cherenkov Single Dish Imaging 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV Energy 1 MeV Compton Gamma Ray Observatory Air Cherenkov Wavefront Sampling Gamma-ray spectrum

Prospects for the Future STACEE will operate for another year Imaging arrays coming online, E threshold  150 GeV - HESS: 5  Crab detection in 30 seconds! - VERITAS: 2 (of 4) dishes completed Air Cherenkov Imaging Arrays 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV Energy 1 MeV Compton Gamma Ray Observatory Air Cherenkov Wavefront Sampling Gamma-ray spectrum

VHE Experimental World STACEE MILAGRO TIBET ARGO-YBJ PACT GRAPES TACTIC VERITAS MAGIC HESS CANGAROO TIBET MILAGRO STACEE TACTIC

Compton Gamma Ray Observatory Prospects for the Future 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 10 MeV Energy 1 MeV Air Cherenkov Wavefront Sampling GLAST Gamma-ray spectrum Air Cherenkov Imaging Arrays STACEE will operate for another year Imaging arrays coming online, E threshold  150 GeV - HESS: 5  Crab detection in 30 seconds! - VERITAS: 2 (of 4) dishes completed GLAST launch in 2007!

GLAST Two instruments:  LAT: 20 MeV – >300 GeV   GBM: 10 keV – 25 MeV LAT energy resolution ~ 10% LAT source localization < 0.5’ GLAST Large Area Telescope (LAT) Burst Monitor (GBM)

EGRET Sources

GLAST Potential

Gamma-ray observations of AGN are key to understanding particle acceleration in the inner jets Many new VHE gamma-ray detectors & detections STACEE - “1 st -generation” instrument sensitive to ~100 GeV gamma rays - Energy reconstruction is successful  detection of Markarian Preliminary spectrum between 130 GeV and 2 TeV - Second spectrum of Mkn 421 at GeV - High-energy peak is above ~200 GeV Bright future for gamma-ray astronomy Conclusions