5-Nov-2003 Heuristic Search Techniques What do you do when the search space is very large or infinite? We’ll study three more AI search algorithms: Backtracking.

Slides:



Advertisements
Similar presentations
Informed Search Algorithms
Advertisements

Aside on AI Will computers ever be intelligent? Really intelligent?
Solving Problem by Searching
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
CS 484 – Artificial Intelligence1 Announcements Department Picnic: today, after class Lab 0 due today Homework 2 due Tuesday, 9/18 Lab 1 due Thursday,
Chapter 4 Search Methodologies.
Problem Solving by Searching
SE Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Review: Search problem formulation
CS 460 Spring 2011 Lecture 3 Heuristic Search / Local Search.
Pathfinding Algorithms Josh Palmer Rachael Beers.
Informed Search Methods How can we make use of other knowledge about the problem to improve searching strategy? Map example: Heuristic: Expand those nodes.
Problem Solving and Search in AI Heuristic Search
CSC344: AI for Games Lecture 4: Informed search
CS 561, Session 6 1 Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Rutgers CS440, Fall 2003 Heuristic search Reading: AIMA 2 nd ed., Ch
State-Space Searches. 2 State spaces A state space consists of –A (possibly infinite) set of states The start state represents the initial problem Each.
State-Space Searches.
Informed Search Idea: be smart about what paths to try.
CMU Snake Robot
Dijkstra’s Algorithm and Heuristic Graph Search David Johnson.
Graphs II Robin Burke GAM 376. Admin Skip the Lua topic.
Vilalta&Eick: Informed Search Informed Search and Exploration Search Strategies Heuristic Functions Local Search Algorithms Vilalta&Eick: Informed Search.
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
Aside on AI Will computers ever be intelligent? Really intelligent? Tasks that previously were thought to require intelligence: adding and subtracting.
P ROBLEM Write an algorithm that calculates the most efficient route between two points as quickly as possible.
Informed (Heuristic) Search
State-Space Searches. 2 State spaces A state space consists of A (possibly infinite) set of states The start state represents the initial problem Each.
Informed search algorithms Chapter 4. Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most.
Informed search strategies Idea: give the algorithm “hints” about the desirability of different states – Use an evaluation function to rank nodes and select.
Informed Search Methods. Informed Search  Uninformed searches  easy  but very inefficient in most cases of huge search tree  Informed searches  uses.
Informed Search Strategies Lecture # 8 & 9. Outline 2 Best-first search Greedy best-first search A * search Heuristics.
For Friday Finish reading chapter 4 Homework: –Lisp handout 4.
Search with Costs and Heuristic Search 1 CPSC 322 – Search 3 January 17, 2011 Textbook §3.5.3, Taught by: Mike Chiang.
Review: Tree search Initialize the frontier using the starting state While the frontier is not empty – Choose a frontier node to expand according to search.
CSC3203: AI for Games Informed search (1) Patrick Olivier
Informed Search I (Beginning of AIMA Chapter 4.1)
1 Kuliah 4 : Informed Search. 2 Outline Best-First Search Greedy Search A* Search.
Search (continued) CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
Informed Search and Heuristics Chapter 3.5~7. Outline Best-first search Greedy best-first search A * search Heuristics.
A General Introduction to Artificial Intelligence.
Feng Zhiyong Tianjin University Fall  Best-first search  Greedy best-first search  A * search  Heuristics  Local search algorithms  Hill-climbing.
Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most desirable unexpanded node Implementation:
Informed Search CSE 473 University of Washington.
3.5 Informed (Heuristic) Searches This section show how an informed search strategy can find solution more efficiently than uninformed strategy. Best-first.
Chapter 3.5 and 3.6 Heuristic Search Continued. Review:Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
G5AIAI Introduction to AI Graham Kendall Heuristic Searches.
Search Methodologies Fall 2013 Comp3710 Artificial Intelligence Computing Science Thompson Rivers University.
For Monday Read chapter 4 exercise 1 No homework.
Romania. Romania Problem Initial state: Arad Goal state: Bucharest Operators: From any node, you can visit any connected node. Operator cost, the.
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Chapter 3.5 Heuristic Search. Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
Review: Tree search Initialize the frontier using the starting state
Artificial Intelligence (CS 370D)
Department of Computer Science
Heuristic Search Introduction to Artificial Intelligence
Chap 4: Searching Techniques Artificial Intelligence Dr.Hassan Al-Tarawneh.
HW #1 Due 29/9/2008 Write Java Applet to solve Goats and Cabbage “Missionaries and cannibals” problem with the following search algorithms: Breadth first.
The A* Algorithm Héctor Muñoz-Avila.
Discussion on Greedy Search and A*
Discussion on Greedy Search and A*
CS 4100 Artificial Intelligence
Informed search algorithms
Informed search algorithms
Artificial Intelligence
CSE 473 University of Washington
Chap 4: Searching Techniques
Artificial Intelligence
Solving Problems by Searching
Informed Search.
Presentation transcript:

5-Nov-2003 Heuristic Search Techniques What do you do when the search space is very large or infinite? We’ll study three more AI search algorithms: Backtracking search Greedy search (Best-first) A*

5-Nov-2003 Example: the 8-puzzle How would you use AI techniques to solve the 8-puzzle problem?

5-Nov-2003 Symbolic AI solution Start state: (e.g.) Goal state: Edges: sliding a tile. From start state: What search algorithm should I use?

5-Nov-2003 Backtracking search Start at the start state Search in any direction Backtrack when stuck This is really the same as Used very frequently E.g. Perl regular expression matching E.g. finding a traveling salesman’s circuit E.g. graph coloring Depth-first search Is there any way I can be smarter than a blind search?

5-Nov-2003 How to get from Arad to Bucharest? How to get from Isai to Fagaras?

5-Nov-2003 Greedy Search (Best-first) Best-first search: like DFS, but pick the path that gets you closest to the goal first Need a measure of distance from the goal h(n) = estimated cost of cheapest path from n to goal h(n) is a heuristic Analysis Greed tends to work quite well (despite being one of the seven deadly sins) But, it doesn’t always find the shortest path Susceptible to false starts May go down an infinite path with no way to reach goal How to ensure you’ll find the best solution?

5-Nov-2003 A* Can we apply the ideas of Dijkstra’s algorithm? Pay attention to total path length, not just distance to the goal f(n) = g(n) + h(n) g(n) = distance traveled so far h(n) = estimated remaining distance (heuristic) A*: do a DFS-like search with lowest f(n) first Does this guarantee an optimal solution?

5-Nov-2003 Optimality of A* Suppose h(n) never overestimates (such heuristics are called admissible) Note that f(n) always increases as search progresses A* is complete and optimal (though often slower than best-first search) The first limitation you are likely to run into with A* search: not enough RAM in your computer…

5-Nov-2003 Heuristics for the 8-puzzle What would a good, admissible heuristic be for the 8-puzzle? h1: number of tiles out of place h2: total distance of squares from destinations

5-Nov-2003 Results of A* Consider solving the 8-puzzle by search, using the following algorithms DFS BFS IDS (iterative deepening search): like staged DFS. A* with heuristic h1 A* with heuristic h2 Will each be able to find the shortest solution? Which one will find it most quickly? Which ones will use lots of memory?

5-Nov-2003 Search CostEffective Branching Factor IDSA*(h1)A*(h2)IDSA*(h1)A*(h2)