1 Uniprocessor Scheduling Chapter 9. 2 Aims of Scheduling Assign processes to be executed by the processor(s) Response time Throughput Processor efficiency.

Slides:



Advertisements
Similar presentations
Uniprocessor Scheduling Chapter 9 Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee Community College, Venice,
Advertisements

Chapter 9 Uniprocessor Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee Community College, Venice,
Chapter 9 Uniprocessor Scheduling
Topic : Process Management Lecture By: Rupinder Kaur Lecturer IT, SRS Govt. Polytechnic College for Girls,Ludhiana.
1 Uniprocessor Scheduling Types of scheduling –The aim of processor scheduling is to assign processes to be executed by the processor so as to optimize.
Chapter 9 Uniprocessor Scheduling
Chapter 9 Uniprocessor Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Dave Bremer Otago Polytechnic, N.Z. ©2008,
Chapter 9 Uniprocessor Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Dave Bremer Otago Polytechnic, N.Z. ©2008,
Ceng Operating Systems Chapter 2.2 : Process Scheduling Process concept  Process scheduling Interprocess communication Deadlocks Threads.
Day 25 Uniprocessor scheduling. Algorithm: Selection function Selection function – which process among ready processes to select. w – time spent in system,
Chapter 3: CPU Scheduling
Chapter 9 Uniprocessor Scheduling
Uniprocessor Scheduling I
Uniprocessor Scheduling Chapter 9. Aim of Scheduling The key to multiprogramming is scheduling Scheduling is done to meet the goals of –Response time.
1 Uniprocessor Scheduling Module CPU Scheduling n We concentrate on the problem of scheduling the usage of a single processor among all the existing.
Chapter 9 Uniprocessor Scheduling
Informationsteknologi Tuesday, October 9, 2007Computer Systems/Operating Systems - Class 141 Today’s class Scheduling.
A. Frank - P. Weisberg Operating Systems CPU Scheduling.
7/12/2015Page 1 Process Scheduling B.Ramamurthy. 7/12/2015Page 2 Introduction An important aspect of multiprogramming is scheduling. The resources that.
1 Lecture 10: Uniprocessor Scheduling. 2 CPU Scheduling n The problem: scheduling the usage of a single processor among all the existing processes in.
1Chapter 05, Fall 2008 CPU Scheduling The CPU scheduler (sometimes called the dispatcher or short-term scheduler): Selects a process from the ready queue.
Chapter 9 Uniprocessor Scheduling Seventh Edition By William Stallings Dave Bremer Otago Polytechnic, N.Z. ©2008, Prentice Hall Operating Systems: Internals.
1 CPU Scheduling & Deadlock Operating Systems Lecture 4.
1 Uniprocessor Scheduling Chapter 9. 2 Aim of Scheduling Main Job: Assign processes to be executed by the processor(s) and processes to be loaded in main.
Chapter 9 Uniprocessor Scheduling Seventh Edition By William Stallings Dave Bremer Otago Polytechnic, N.Z. ©2008, Prentice Hall Operating Systems: Internals.
Uniprocessor Scheduling
CPU Scheduling Chapter 6 Chapter 6.
Chapter 6: CPU Scheduling
Computer Architecture and Operating Systems CS 3230: Operating System Section Lecture OS-3 CPU Scheduling Department of Computer Science and Software Engineering.
10CSE CPU Scheduling Copyrights Lecture Slides adapted from “ Advanced Operating Systems ”, Lecture Notes by Prof. Prof. Daniel Mosse, University Of Pittsburgh,
Lecture 5: Uniprocessor Scheduling
1 Uniprocessor Scheduling Chapter 9. 2 CPU Scheduling We concentrate on the problem of scheduling the usage of a single processor among all the existing.
Chapter 9 Uniprocessor Scheduling Spring, 2011 School of Computer Science & Engineering Chung-Ang University.
Chapter 9 Uniprocessor Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee Community College, Venice,
Chapter 9 Uniprocessor Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee Community College, Venice,
Chapter 6 CPU SCHEDULING.
Chapter 9 Uniprocessor Scheduling Seventh Edition By William Stallings Dave Bremer Otago Polytechnic, N.Z. ©2008, Prentice Hall Operating Systems: Internals.
Operating System Chapter 9. Uniprocessor Scheduling
Operating Systems Process Management.
Uniprocessor Scheduling Chapter 9. Aim of Scheduling To improve: Response time: time it takes a system to react to a given input Turnaround Time (TAT)
Uniprocessor Scheduling Chapter 9. Aim of Scheduling Minimize response time Maximize throughput Maximize processor efficiency.
Fall 2000M.B. Ibáñez Lecture 11 Uniprocessor Scheduling.
1 Uniprocessor Scheduling Chapter 9. 2 CPU Scheduling n We concentrate on the problem of scheduling the usage of a single processor among all the existing.
Lecture 7: Scheduling preemptive/non-preemptive scheduler CPU bursts
1 Uniprocessor Scheduling Chapter 9. 2 Aim of Scheduling Response time Throughput Processor efficiency.
Uniprocessor Scheduling Chapter 9. Aim of Scheduling Response time Throughput Processor efficiency.
Uniprocessor Scheduling
Operating System 9 UNIPROCESSOR SCHEDULING. TYPES OF PROCESSOR SCHEDULING.
Uniprocessor Scheduling Chapter 9. Processor Scheduling Processor scheduling determines the assignment of processes to be executed by the processor over.
Uniprocessor Scheduling Chapter 9. Aim of Scheduling Assign processes to be executed by the processor or processors: –Response time –Throughput –Processor.
1 Uniprocessor Scheduling Chapter 3. 2 Alternating Sequence of CPU And I/O Bursts.
Chapter 9 Uniprocessor Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Dave Bremer Otago Polytechnic, N.Z. ©2008,
Lecture 4 CPU scheduling. Basic Concepts Single Process  one process at a time Maximum CPU utilization obtained with multiprogramming CPU idle :waiting.
1 Lecture 5: CPU Scheduling Operating System Fall 2006.
1 Uniprocessor Scheduling Chapter 9. 2 Aim of Scheduling Assign processes to be executed by the processor(s) Response time Throughput Processor efficiency.
Uniprocessor Scheduling Chapter 9 Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee Community College, Venice,
Uniprocessor Scheduling
Uniprocessor Scheduling
CPU Scheduling Chapter 5.
Uniprocessor Scheduling
Day 25 Uniprocessor scheduling
Operating Systems CPU Scheduling.
Chapter 6: CPU Scheduling
OverView of Scheduling
Operating System Chapter 9. Uniprocessor Scheduling
Chapter 9 Uniprocessor Scheduling
Operating System 9 UNIPROCESSOR SCHEDULING
Chapter 9 Uniprocessor Scheduling
Uniprocessor Scheduling
Uniprocessor Scheduling
Presentation transcript:

1 Uniprocessor Scheduling Chapter 9

2 Aims of Scheduling Assign processes to be executed by the processor(s) Response time Throughput Processor efficiency

3

4

5

6

7 Long-Term Scheduling Determines which programs are admitted to the system for processing Controls the degree of multiprogramming More processes, smaller percentage of time each process is executed Two issues: –When to accept new processes? –Which processes to accept?

8 Medium-Term Scheduling Part of the swapping function Based on the need to manage the degree of multiprogramming

9 Short-Term Scheduling Known as the dispatcher Executes most frequently Invoked when an event occurs –Clock interrupts –I/O interrupts –Operating system calls –Signals

10 Short-Term Scheduling Criteria User-oriented –Response Time Elapsed time between the submission of a request until there is output. System-oriented –Effective and efficient utilization of the processor

11 Short-Term Scheduling Criteria Performance-related –Quantitative –Measurable such as response time and throughput

12

13

14 Priorities Scheduler will always choose a process of higher priority over one of lower priority Have multiple ready queues to represent each level of priority Lower-priority may suffer starvation –Allow a process to change its priority based on its age or execution history

15

16 Decision Mode Nonpreemptive –Once a process is in the running state, it will continue until it terminates or blocks itself for I/O Preemptive –Currently running process may be interrupted and moved to the Ready state by the operating system –Allows for better service since any one process cannot monopolize the processor for very long

17 Process Scheduling Example (1) Finish time (2) Turnaround time (3) Residence time or total time that the item spends (4) Normalized turnaround time (2/3)

18 First-Come-First-Served (FCFS) Each process joins the Ready queue When the current process ceases to execute, the oldest process in the Ready queue is selected

19 First-Come-First-Served (FCFS) A short process may have to wait a very long time before it can execute Favors CPU-bound processes –I/O processes have to wait until CPU-bound process completes

20 Round-Robin Uses preemption based on a clock An amount of time is determined that allows each process to use the processor for that length of time

21 Round-Robin Clock interrupt is generated at periodic intervals When an interrupt occurs, the currently running process is placed in the ready queue –Next ready job is selected Known as time slicing

22

23

24 Shortest Process Next Nonpreemptive policy Process with shortest expected processing time is selected next Short process jumps ahead of longer processes

25 Shortest Process Next Predictability of longer processes is reduced If estimated time for process not correct, the operating system may abort it Possibility of starvation for longer processes

26

27

28 Shortest Remaining Time Preemptive version of shortest process next policy Must estimate processing time

29 Highest Response Ratio Next (HRRN) Choose next process with the greatest ratio time spent waiting + expected service time R = ____________________________________ expected service time

30 Feedback Penalize jobs that have been running longer Don’t know remaining time process needs to execute

31

32

33

34

35

36

37

38

39

40 Fair-Share Scheduling User’s application runs as a collection of processes (threads) User is concerned about the performance of the application Need to make scheduling decisions based on process sets

41

42 Traditional UNIX Scheduling Multilevel feedback using round robin within each of the priority queues If a running process does not block or complete within 1 second, it is preempted Priorities are recomputed once per second Base priority divides all processes into fixed bands of priority levels

43 Bands Decreasing order of priority –Swapper –Block I/O device control –File manipulation –Character I/O device control –User processes

44

45