R. A. Pitts et al., O-161 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Parallel SOL flow in TCV R. A. Pitts, J. Horacek, W. Fundamenski 1, A. Nielsen.

Slides:



Advertisements
Similar presentations
Barbora Gulejová 1 of 19 Centre de Recherches en Physique des Plasmas Swiss physical society 26/3/2008 SOLPS5 simulations of ELMing H-mode Barbora Gulejová.
Advertisements

Dynamical plasma response during driven magnetic reconnection in the laboratory Ambrogio Fasoli* Jan Egedal MIT Physics Dpt & Plasma Science and Fusion.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.
Institute of Interfacial Process Engineering and Plasma Technology Gas-puff imaging of blob filaments at ASDEX Upgrade TTF Workshop.
A. Kirk, 21 st IAEA Fusion Energy Conference, Chengdu, China, October 2006 Evolution of the pedestal on MAST and the implications for ELM power loadings.
1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton.
G. De Temmerman ITPA 10 meeting, Moscow, April 06 1 Influence of material choice on the deposition/erosion mechanisms affecting optical reflectivity of.
Paper O4.007, R. A. Pitts et al., 34th EPS Conference: 5 July 2007 Neoclassical and transport driven parallel SOL flows on TCV R. A. Pitts, J. Horacek.
R. A. Pitts: KFKI-RMKI, Budapest 12/04/2007 A summary of some recent edge physics research on TCV and JET R. A. Pitts Centre de Recherches en Physique.
Centre de Recherches en Physique des Plasmas TF-E modellers meeting B. Gulejová6/5/ of 10 SOLPS5 simulations of Type I ELMing H-mode at JET Barbora.
R. A. Pitts: FOM-Rijnhuizen, 30/11/2006 A summary of some recent edge physics research on TCV and JET R. A. Pitts Centre de Recherches en Physique des.
Barbora Gulejová 1 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Particle sources and radiation distributions in.
W. Fundamenski, IAEA FEC 2004, Vilamoura, Portugal1 Power Exhaust on JET: An Overview of Dedicated Experiments W.Fundamenski, P.Andrew, T.Eich.
Barbora Gulejová 1 of 2 EPS 2007 material 20/6/2007 Time-dependent modelling of ELMing H-mode at TCV with SOLPS Barbora Gulejová, Richard Pitts, Xavier.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
S. H. Müller, CRPP, SwitzerlandIAEA TM – Trieste – March 2-4, Basic Turbulence Studies on TORPEX and Challenges in the Theory-Experiment Comparison.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Joaquim Loizu P. Ricci, F. Halpern, S. Jolliet, A. Mosetto
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
H-mode characteristics close to L-H threshold power ITPA T&C and Pedestal meeting, October 09, Princeton Yves Martin 1, M.Greenwald, A.Hubbard, J.Hughes,
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
L. Chen US TTF meeting, 2014 April 22-25, San Antonio, Texas 1 Study on Power Threshold of the L-I-H Transition on the EAST Superconducting Tokamak L.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
O. Sauter Effects of plasma shaping on MHD and electron heat conductivity; impact on alpha electron heating O. Sauter for the TCV team Ecole Polytechnique.
ITPA DSOL meeting, Toronto W. Fundamenski9/11/2006 TF-E Introduction to ELM power exhaust: Overview of experimental observations W.Fundamenski Euratom/UKAEA.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
1 Blobs in the divertor region R. J. Maqueda (Nova Photonics) Although some understanding is emerging on the generation and evolution of blobs from the.
1 of 22A.V.Chankin & D.P.Coster, 18 th PSI Conference, Toledo, Spain, 29 May 2008 Comparison of 2D Models for the Plasma Edge with Experimental Measurements.
Physics of fusion power Lecture 9 : The tokamak continued.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,
4. Mg islands, electric fields, plasma rotation
EAST Data processing of divertor probes on EAST Jun Wang, Jiafeng Chang, Guosheng Xu, Wei Zhang, Tingfeng Ming, Siye Ding Institute of Plasma Physics,
Kursus i Plasmafysik, OPL, Risø Juni , 2005 Turbulence, mixing and transport, June 21, 2005  Turbulence, mixing and transport in magnetized plasmas.
J. Horacek: Interchange turbulence simulation describes experiment 1 Understanding SOL plasma turbulence by interchange motions J. Horacek 1, O.E. Garcia.
R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,
1/1318 th PSI conference – Toledo, May 2008P. Tamain Association EURATOM-CEA 3D modelling of edge parallel flow asymmetries P. Tamain ab, Ph. Ghendrih.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
J. Boedo, UCSD Fast Probe Results and Plans By J. Boedo For the UCSD and NSTX Teams.
O-36, p 1(10) G. Arnoux 18 th PSI, Toledo, 26-30/05/2008 Divertor heat load in ITER-like advanced tokamak scenarios on JET G.Arnoux 1,(3), P.Andrew 1,
RFX-mod Program Workshop, Padova, January Current filaments in turbulent magnetized plasmas E. Martines.
EXTENSIONS OF NEOCLASSICAL ROTATION THEORY & COMPARISON WITH EXPERIMENT W.M. Stacey 1 & C. Bae, Georgia Tech Wayne Solomon, Princeton TTF2013, Santa Rosa,
TTF 2013, USA, 1 O. Sauter, On the non-stiffness of edge transport in L-modes O. Sauter, D. Kim, R. Behn, S. Coda,
ASIPP, 24/ Modelling of near LH effects on the SOL, in view of extrapolation to ITER V. Petrzilka 1, G. Corrigan 2, P. Belo 3, A. Ekedahl 4, K.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06.
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
53rd Annual Meeting of the Division of Plasma Physics, November , 2010, Salt Lake City, Utah 5-pin Langmuir probe configured to measure the Reynolds.
53rd Annual Meeting of the Division of Plasma Physics, November , 2011, Salt Lake City, Utah When the total flow will move approximately along the.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.
Plasma Turbulence in the HSX Stellarator Experiment and Probes C. Lechte, W. Guttenfelder, K. Likin, J.N. Talmadge, D.T. Anderson HSX Plasma Laboratory,
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
O. Sauter “Robust” NTM Control: The AMN-system O. Sauter for the TCV and AUG teams Ecole Polytechnique Fédérale de Lausanne (EPFL) Centre de Recherches.
Y Andrew 1 (14) Transport and Confinement ITPA meeting October 2008 H-mode Access on JET Y Andrew and JET EFDA Contributors UKAEA- Fusion Transport.
54th Annual Meeting of the Division of Plasma Physics, October 29 – November 2, 2012, Providence, Rhode Island 5-pin Langmuir probe measures floating potential.
Generation of Toroidal Rotation by Gas Puffing
Mechanisms Controlling Parallel Flows in the SOL
Studies of Bias Induced Plasma Flows in HSX
Presentation transcript:

R. A. Pitts et al., O-161 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Parallel SOL flow in TCV R. A. Pitts, J. Horacek, W. Fundamenski 1, A. Nielsen 2, O. E. Garcia 2, V. Naulin 2, J. Juul Rasmussen 2, M. Wischmeier Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse, École Polytechnique Fédérale de Lausanne, CH-1015, Switzerland 1 UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, UK 2 Association-Euratom Risø National Laboratory, Roskilde, Denmark Centre de Recherches en Physique des Plasmas Brief introduction to flows Experimental arrangement Parallel flow in FWD-B and REV-B  density variation Effect of location in the outboard midplane vicinity Understanding the flows Conclusions Outline

R. A. Pitts et al., O-162 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 BB Bx  B E r xB,  pxB Ballooning Pfirsch- Schlüter Divertor sink ExBExB Simplified – flow components in poloidal plane only Poloidal Parallel Motivation – understanding SOL flows FWD B  BB Bx  B REV B  More in Review paper by N. Asakura, Fri. morning

R. A. Pitts et al., O-163 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Magnetic configurations #26092#27585#27582#27588 Bx  B Only ohmic diverted plasmas, with emphasis on direction of B , configuration and density (|B  | = 1.43 T) B  and I p always reversed together to preserve helicity Mach probe

R. A. Pitts et al., O-164 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Mach probe Fast reciprocating probe with Mach probe head mounted on the machine midplane Mach No. defined in the usual way: Postive flow defined UPWARDS All data mapped to outer midpl mm Two separate heads used to account for differing poloidal contour as plasma displaced downwards 1 2 Non-Mach pins used to measure profiles of n e, T e, V plasma

R. A. Pitts et al., O-165 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Case: REV-B, SNL, +340 kA, n e scan Flow always towards outer target in REV-B High flow (M || ~ 0.6) near separatrix at low density Flow decreases with increasing density Very similar in He OUTER divertor (10 19 m -3 ) And in ohmic H-mode (Type III) OUTER divertor (10 19 m -3 ) OUTER divertor (10 19 m -3 )

R. A. Pitts et al., O-166 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Case: FWD-B/REV-B,  260 kA, n e scan OUTER divertor (10 19 m -3 ) REV-B  Very similar to 340 kA in REV-B Switch direction with B  Always co-current Decrease with increasing n e Behaviour consistent with Pfirsch-Schlüter Slight negative offset (i.e. towards outer divertor) OUTER divertor (10 19 m -3 ) OUTER divertor INNER divertor (10 19 m -3 ) REV-B  FWD-B 

R. A. Pitts et al., O-167 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Field independent component (260 kA) Assume flow made up of two components: B  dependent B  independent  mean of flows in FWD/REV-B gives B  independent term OUTER divertor (10 19 m -3 ) TCV data support small, offset term (M || ~0.05 – 0.1) with indication of density dependence Good candidate for “ballooning” driven flow

R. A. Pitts et al., O-168 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Case: REV-B, SNL, z-scan, 260 kA OUTER divertor = 4.2 x m -3 Change in M || with z consistent with a ballooning drive Probe to outer target connection length increases as plasma is lowered vertically +10 cm0 cm-10 cm OUTER divertor

R. A. Pitts et al., O-169 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Case: REV-B, SNL, z-scan, 260 kA = 4.2 x m -3 Good match in local SOL p e and V p profiles Ion pressure and E r main drivers for neoclassical flows  Not the cause of the flow offset +10 cm0 cm-10 cm

R. A. Pitts et al., O-1610 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Return to previous 260 kA density scan in FWD/REV-B: Main flow drive is Pfirsch-Schlüter OUTER divertor INNER divertor (10 19 m -3 ) REV B  OUTER divertor INNER divertor (10 19 m -3 ) REV B  FWD B  Choose radial band in the main SOL: 8 < r-r sep < 12 mm Take mean exptl. M || and plot versus density OUTER divertor INNER divertor OUTER divertor INNER divertor Compare with predicted Pfirsch-Schlüter flow 

R. A. Pitts et al., O-1611 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Return to 260 kA REV-B, high density case: What drives the offset component? Strong candidate is enhanced parallel pressure due to cross-field motion of interchange driven filaments in the outboard midplane region SOLPS5 modelling without drifts shows T i gradients develop above the X-pt. which can drive flows – open divertor geometry OUTER divertor ESEL #115, Density Separatrix Wall O. E. Garcia et al., PPCF 48 (2006) L1 See also P3-8, Thurs. afternoon Estimate M || with simple Ansatz relating the transient filament overpressure to parallel flow (ESEL code 2D only) W. Fundamenski et al., submitted to NF OUTER divertor

R. A. Pitts et al., O-1612 of 12PSI17, Heifei Anhui, China, 22-26/05/2006Conclusions First parallel particle flow measurements in the outboard midplane region of TCV have shown: Flows can be large (M || = ) at low density Decrease as density increases – almost stagnant at high n e Reverse nearly symmetrically with B  reversal Are consistent with Pfirsch-Schlüter return as main drive Clear, small (M || ≤ 0.1) residual offset component towards outer target below and above midplane is consistent with enhanced, interchange driven transport in the midplane region Further experiments necessary to eliminate divertor sink as a possible contributor

R. A. Pitts et al., O-1613 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Reserve slides

R. A. Pitts et al., O-1614 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Case: REV-B, SNL z = 0, 260 kA, n e scan (10 19 m -3 ) OUTER divertor Flows on the midplane same direction and similar magnitude to those between midplane and X-point Only REV-B  data available Very sensitive to n e

R. A. Pitts et al., O-1615 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Example probe and edge TS profiles Good quality measurements for estimates of drift flows Clear flattening of density profile as density increased Probe and edge TS scattering agree well in T e (not n e – understood)

R. A. Pitts et al., O-1616 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Return to 260 kA REV-B, high density case: What drives the offset component? Strong candidate is enhanced parallel pressure due to cross-field motion of interchange driven filaments in the outboard midplane region SOLPS5 modelling without drifts shows T i gradients develop above the X-pt. which can drive flows – open divertor geometry OUTER divertor ESEL #115, Density Separatrix Wall O. E. Garcia et al., PPCF 48 (2006) L1 See also P3-8, Thurs. afternoon Estimate M || with simple ansatz:  0.5 t(p >  )/  t assuming a “sub-sonic” transient flow of M || = 0.5 W. Fundamenski et al., submitted to NF OUTER divertor