Applying Evolutionary Algorithm to Chaco Tool on the Partitioning of Power Transmission System (CS448 Class Project) Yan Sun
Problem Statement Overheads in Maxflow Calculation need to be minimized Partition the Power Transmission System (PTS) using Chaco An optimal set of parameters for Chaco
Chaco Developed by Bruce Hendrickson at Sandia National Lab Available partitioning methods Inertial Spectral Kernighan-Lin Multilevel KL
Chaco Parameters Debugging Parameters Execution Parameters Extended Functionality Parameters
Previous Experimentations Austin and Brian’s experiments # partitions – 5 or 6 Degree as vertex weight 200 – 400 external message counts
Experimental Procedure Download and install Maxflow Run Chaco Take output from Chaco and create XML file Run Maxflow
EA Details -- Parameters # partitions 5 6 # coarsening to 50 20 Partition method Bisection Quadrisection
EA Details Representation— array of 297 integers first 99 next 198 Both vertex weights and edge weights Objective Function— number of message passed across partitions Fitness Function—negative value of Object Function
EA Details Population Size = 20 Random Initialization Offspring Size = 6 Parent Selection Tournament
EA Details Recombination Mutation Survivor Selection Deterministic, Elitist, Steady State Termination Condition Max # of generations No improvement Best solution found
Parameter Sets # Partitions # Coarsening to Partition Method Para 1550Bisection Para 2550Quadrisection Para 3520Bisection Para 4520Quadrisection Para 5650Bisection
Average Fitness Values Para 1Para 2Para 3Para 4Para 5 Terminating Average Fitness
Fitness vs. Generations
Wilcoxon Rank-Sum Test
# Generations to Reach Best Fitness
Wilcoxon Rank-Sum Test
Conclusion No difference found among parameter sets Fewer external message counts vs Better partition?
Problem Non-deterministic evaluation results population average fitness value
Q/A?