GALACTIC STRUCTURE, EVOLUTION AND MERGER REMNANTS The Role that Astrometry Plays in Understanding the Kinematical Structure of the Galaxy Dana I. Dinescu.

Slides:



Advertisements
Similar presentations
Chemical Cartography with SDSS/APOGEE Michael Hayden (NMSU), Jo Bovy (IAS), Steve Majewski (UVa), Jennifer Johnson (OSU), Gail Zasowski (JHU), Leo Girardi.
Advertisements

The Universe of Galaxies. A Brief History Galileo.
1 Low luminosity observations: a test for the Galactic models Degl’Innocenti S. 1, Cignoni M. 1, Castellani V. 2, Petroni S. 1, Prada Moroni P.G. 1 1 Physics.
The Halo of the Milky Heidi Jo Newberg Rensselaer Polytechnic Institute.
Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
HWR Princeton 2005 IV: Milky Way / Local Group Tomography Hans-Walter Rix MPI for Astronomy Heidelberg The stellar distribution in the Milky Way is not.
Galaxy Formation and Evolution Open Problems Alessandro Spagna Osservatorio Astronomico di Torino Torino, 18 Febbraio 2002.
Dissolving globular clusters: the fate of M 12 Work in collaboration with F. Paresce (INAF) and L. Pulone (Obs. Rome)
TeV Particle Astrophysics, Venice, August 29, 2007J. Siegal-Gaskins1 Signatures of ΛCDM substructure in tidal debris Jennifer Siegal-Gaskins in collaboration.
Tidal Streams in the Milky Way (and M31) Jorge Peñarrubia (University of Victoria, Canada) & David Martinez Delgado (IAC, Spain) 22th of June 2006 Valencia.
Chania, Crete, August 2004 “The environment of galaxies” Pierre-Alain Duc Recycling in the galaxy environment F. Bournaud J. Braine U. Lisenfeld P. Amram.
Tidal Disruption of Globular Clusters in Dwarf Galaxies J. Peñarrubia Santiago 2011 in collaboration with: M.Walker; G. Gilmore & S. Koposov.
The Milky Way Galaxy part 2
Dwarf Galaxies and Their Destruction... Marla Geha Carnegie Observatories (OCIW) Collaborators: P. Guhathakurta (UCSC), R. van der Marel (STScI)
Galactic archaeology Rodrigo Ibata Observatoire de Strasbourg.
Breaking tidal stream degeneracies with LAMOST Jorge Peñarrubia (IoA) Cambridge 2nd December 08.
The Milky Way PHYS390 Astrophysics Professor Lee Carkner Lecture 19.
Internal motions in star clusters Gordon Drukier Dept. of Astronomy, Yale University Yale Astrometry Workshop — 21 July 2005 Gordon Drukier Dept. of Astronomy,
Spatial Structure Evolution of Open Star Clusters W. P. Chen and J. W. Chen Graduate Institute of Astronomy National Central University IAU-APRM
Culmination of the Southern Proper Motion Program T. Girard (Yale University) William van AltenaArnold KlemolaTing-Gao Yang Carlos LópezDana Casetti-DinescuJohn.
The Milky Way Galaxy 19 April 2005 AST 2010: Chapter 24.
The Milky Way Galaxy James Binney Oxford University.
GALAXIES, GALAXIES, GALAXIES! A dime a dozen… just one of a 100,000,000,000! 1.Galaxy Classification Ellipticals Dwarf Ellipticals Spirals Barred Spirals.
Proper-Motion Membership Determinations in Star Clusters Dana I. Dinescu (Yale U.)
A Galactic halo road map The halo stars : where, whither, whence? Chris Thom, Jyrki Hänninen, Johan Holmberg, Chris Flynn Tuorla Observatory Swinburne.
Alice Quillen University of Rochester in collaboration with Ivan Minchev Observatoire de Strassbourg Aug, 2009.
Galaxy Formation and Evolution Galactic Archaeology Chris Brook Modulo 15 Room 509
Goal: To know the different types of galaxies and to understand their differences and similarities. Objectives: 1) To learn about Spirals 2) To learn about.
Levels of organization: Stellar Systems Stellar Clusters Galaxies Galaxy Clusters Galaxy Superclusters The Universe Everyone should know where they live:
A1143 Quiz 4 Distribution of Grades: No Curve. Milky Way: Bright Band Across Sky (Resolved by Galileo)
Galactic Stellar Population Structure and kinematics Alessandro Spagna Osservatorio Astronomico di Torino 26 Febbraio 2002.
The Milky Way Disk and the LAMOST survey Jinliang HOU Shanghai Astronomical Observatory, CAS Workshop on Galactic Studies with the LAMOST Survey KIAA-PKU,
1 Galactic Science and MOS on the WHT Amina Helmi.
The Dual Origin of a Simulated Milky Way Halo Adi Zolotov (N.Y.U.), Beth Willman (Haverford), Fabio Governato, Chris Brook (University of Washington, Seattle),
El universo: Edad: 13.7 millardos de años (1 % de error) Expansión: 71 km/sec/Mpc actualmente (5 % de error) 73% = Energía oscura 23% = materia oscura.
Star Clusters and their stars Open clusters and globular clusters General characteristics of globular clusters Globular cluster stars in the H-R diagram.
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
Astrometry & the Yale/WIYN ODI Survey. Potential astrometric projects Local luminosity function (van Altena, et al.) obtain  ≤ 0.10 parallaxes to 150.
GalaxiesGalaxies Learning Outcome (Student will…): compare characteristics & classification of various galaxies.
Diaspora in Cercetarea Stiintifica Bucuresti, Sept The Milky Way and its Satellite System in 3D Velocity Space: Its Place in the Current Cosmological.
Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.
Dwarf Spheroidal Galaxies Orbiting the Milky Way Edward W Olszewski, Steward Obs.
New and Odds on Globular Cluster Stellar Populations: an Observational Point of View (The Snapshot Database) G.Piotto, I. King, S. Djorgovski and G. Bono,
Globular Cluster and Satellite Orbits: 2008 Status Dana Casetti-Dinescu - Wesleyan and Yale.
Astronomy 404/CSI 769 Extragalactic Astronomy
Surveying the Extremities of the Magellanic Clouds A work in progress A. Saha Collaborators: Ed Olszewski Chris Smith Knut Olsen Jason Harris Armin Rest.
UNIT 1 The Milky Way Galaxy.
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
Milky Way thin disk. Q: in order to study the spatial distribution of the thin disk (which dominates the Milky Way luminosity) surface photometry in the.
Gurtina Besla Harvard CfA Collaborators: Nitya Kallivayalil
The vertical structure of the Galactic Halo Carla Cacciari, Angela Bragaglia - INAF OA Bologna Tom Kinman - NOAO Alberto Buzzoni - INAF TNG Alessandro.
Galaxies: Our Galaxy: the Milky Way. . The Structure of the Milky Way Galactic Plane Galactic Center The actual structure of our Milky Way is very hard.
The High Redshift Universe Next Door
Pisa, 4 May 2009 Alessandro Spagna A new kinematic survey (from GSC-II and SDSS-DR7) to study the stellar populations of the Milky Way Alessandro Spagna.
Parallax Luminosity and mass functions - a few basic facts Kinematics of the solar neighborhood Asymmetric drift Thin disk, thick disk Open and globular.
Galactic Structure and Near-field Cosmology via Astrometry with ODI Dana Casetti, Terry Girard, Bill van Altena - Yale Orbits of MW: satellites satellites.
Gaia ITNG2013 School, Tenerife Ken Freeman, Lecture 4: the stellar halo September 2013.
© 2017 Pearson Education, Inc.
Takahiro Sumi (Princeton) Laurent Eyer (Geneva Obs.)
An ACS High-latitude Survey
The Milky Way Galaxy 1/30/03.
Learning about first galaxies using large surveys
Towards a kinematic model of the Local Group as-Astrometry with VLBI
The Galactic Stellar Halo imaged by VST
Galaxies.
Star Clusters and their stars
Galaxies.
Modeling the Extended Structure of Dwarf Spheroidals (Carina, Leo I)
Presentation transcript:

GALACTIC STRUCTURE, EVOLUTION AND MERGER REMNANTS The Role that Astrometry Plays in Understanding the Kinematical Structure of the Galaxy Dana I. Dinescu – (Yale University)

SDSS Perturbed Spiral Galaxies

The Milky Way as a Growing System G. Gilmore and R. Sword

Majewski et al – 2MASS

The Sagittarius Dwarf Galaxy: Tidal Streams Mapped from 2MASS (Majewski et al. 2003)

The Science Goals 1) Better describe and understand the accretion process in our Galaxy, and its contribution to the formation of the halo, bulge, and disk. 2) Kinematically characterize the main components of the Milky Way in order to describe the Galactic potential: i.e., measure mean velocities and velocity dispersions over the relevant size of the Galaxy. Requirements Absolute proper motions of: 1) Globular clusters, MW satellites, stars in known streams, and anonymous stars in deep, survey-type programs. 2) Tracers of the main Galactic components: stars, open and globular clusters.

Absolute Proper Motions By means of an inertial reference frame defined by: 1) galaxies, QSOs (many pencil beam surveys, clusters and MW satellites programs, NPM, SPM, USNO_B-SDSS, etc.) 2) Stars with already determined absolute proper motions: Hipparcos, Tycho2, UCAC2, NPM, SPM 3) Stars with modeled or assumed known kinematics, e.g., disk stars in the case of Sgr, (Ibata et al. 1997), SMC stars for 47 Tuc (Anderson & King 2003), bulge stars for NGC 6522, 6528, 6553 (Terndrup et al. 1998, Feltzing & Johnson 2002, Zoccali et al. 2001), kinematic Galactic model for 14 globular clusters (Cudworth & Hanson 1993). Millisecond pulsars in globular clusters: From timing data, very accurate absolute positions are obtained. These can be used to determine absolute proper motions over a relatively short time baseline (e.g., Freire et al. 2003).

Required proper-motion uncertainty

Most notable systematics found in proper-motion determinations 1) Magnitude-dependent: practically all photographic plates have guiding-induced positional biases of image centroids that occur due to long exposures combined with the non-linear response of the photographic plate. Kohzurina-Platais et al – NGC 3680

SPM – Girard et al. 1998; grating images were used to correct magnitude equation in positions: proper-motion differences between blue and visual plate pairs SPM – cluster program, Dinescu et al. 1999; field of M4 after magnitude equation correction based on grating images.

2) Color-dependent: due to color dependence of atmospheric refraction. Observations taken at different hour angles, and with different filter-plate combinations and telescopes are affected by color terms. This is why QSOs and galaxies may give different answers when determining absolute proper motions. Dinescu et al. 2004; Fornax field: galaxies and QSOs

3) Position-dependent: mainly due to optical distortion. Most notable for wide field, short f/ratio telescopes (e.g., Schmidt telescopes that were used for deep, all-sky surveys). Other: field rotation, coma. Distortion can be modeled (e.g. Chiu 1976, Cudworth & Rees 1991, Zacharias et al –UCAC1, UCAC2, Anderson & King 2003). However, position-dependent systematics may remain in the proper motions. These can be overcome by defining local “plate” solutions around objects of interest- clusters, extragalactic objects- through reference stars of the same kinematical population. Dinescu et al. 2001, NGC 7006

Proper-motion Results: Globular Clusters M (0.54) (0.54) Kalirai et al – HST, ~12 galaxies (0.35) (0.35) Bedin et al – HST, 1 QSO (0.36) (0.49) Dinescu et al SPM, ~100 Hipparcos stars

Proper-motion Results: MW Satellites Sagittarius Dwarf - Ibata et al and Dinescu et al. 2005, proper-motion measurements agree and produce an orbit that agrees with the location of tidal debris. LMC – Kroupa et al (PPM), Jones et al. 1994, Kroupa & Bastian 1997 (Hipparcos), Pedreros et al. 2002, Drake et al (MACHO), Momany & Zaggia 2005 (UCAC2); basically limited in precision and accuracy for the purpose of detailed dynamical modeling of the system (see van de Marel et al. 2002). SMC – Kroupa & Bastian 1997 (Hipparcos), Irwin 1999 (galaxies) More distant dwarf spheroidals (Sculptor, Ursa Minor, Draco, Carina and Fornax) - there are: 1) ground-based, long time-baseline studies (Scholz & Irwin 1994, Schweitzer et al. 1995,1997, Dinescu et al. 2004, and 2) space-based (HST), short time-baseline measurements (Piatek et al. 2002, 2003, 2005). For overlapping measurements (UMi and Fornax), results disagree. Space-based observations produce more energetic, more eccentric orbits than ground-based ones.

Scientific Results 1) Characterizing the Globular-Cluster System: Age, Metallicity, Orbit Shape Mackey & Gilmore 2004 with orbits from Dinescu et al. 1999, 2000, 2001, ages from De Angeli et al. 2005

2) Detecting/Characterizing Accretion Signatures Sagittarius and its tidal debris Pal 12 proper motion - Dinescu et al Martinez-Delgado et al. 2002Cohen 2004 Majewski et al. 2004

Sagittarius and its tidal debris (cont.) SA 71 - Dinescu et al Putman et al. 2004

 Centauri Bedin et al Lee et al Self-enriched system with a complex chemical pattern

 Cen’s Orbit Retrograde; R p = 1.6 kpc, R a = 6.0 kpc, z = 2.0 kpc, ecc = 0.57, P r = 80 mill. years, plane crossing ~ 22 mill. years (Dinescu et al. 1999) On the current orbit,  Cen couldn’t have chemically enriched itself (Gnedin et al. 2002)

N-body modeling of the disruption of  Cen’s parent galaxy  Cen’s parent system: a massive system of M o and half-mass radius of 1.4 kpc. It has a radial, low-inclination orbit that starts at ~ 60 kpc from the Galactic center and decays in ~ 2 Gyr to the current orbit of  Cen (Tsuchiya et al. 2004, 2003). The debris form a disklike structure within 6 kpc from the Galactic center. Kinematical and chemical surveys within 1-2 kpc of the Sun should be able to detect such a structure (Dinescu 2002, Meza et al. 2005). The thin disk of the Galaxy is potentially strongly affected by such a massive satellite. Very likely, other globular clusters may originate from this satellite (Dinescu 2002).

Searching for debris from  Cen’s parent galaxy Dinescu 2002, use Beers et al cat., and highlight RR Lyrae Meza et al. 2005

The Monoceros tidal stream Pennarubia et al. 2005; proper motions from Munn et al (USNOB-SDSS) of 3-4 mas/yr precision per star. These allow the distinction between pro and retrograde orbits of the parent satellite.

3) Milky Way Satellites: Interactions, Orbit Alignments Fornax crossed the Magellanic plate ~200 Myr ago, a time that coincides with the termination of the SF process in Fornax. The excess, anomalous clouds within the SGP region of the Magellanic stream (Putman et al. 2003), whose origin has long been debated in the literature as constituents of either the MS or of the extragalactic Sculptor group, are found to lie along the orbit of Fornax. Cloud orientations differ from those in the MS, and their radial velocities are well below those of galaxies in the Sculptor group. These clouds may be stripped material from Fornax as the dwarf crosses the orbit of the Magellanic clouds. Fornax dwarf Dinescu et al. 2004

3) Galactic Structure: Characterizing the Main Components Thin disk Solar neighborhood samples with proper motions from e.g. Hipparcos, Tycho2, UCAC2, NPM/SPM aim to describe the disk in terms of:  Galactic potential via surface density as a function of z (e.g. Korchagin et al 2003, Galactic rotation (Oort coefficients, e.g., Ollig & Dehnen 2003), bar’s signature in local velocity groups (Dehnen 2000, Fux 2001).  Disk’s heating mechanism via velocity dispersion as a function of age (e.g., Nordstrom et al 2004). More distant tracers (OB stars, possibly open clusters) can be used to describe/understand the disk on a larger scale:  The spiral pattern and the warp: (Fernandez et al. 2001, Drimmel et al. 2000)

3) Galactic Structure: Characterizing the Main Components (cont.) Thick disk There are numerous studies that use particular tracers to measure the thick disk’s mean velocity and dispersion. It was found that these numbers do not necessarily agree, and that there appears to be a variation with distance from the Galactic plane (Majewski 1994). This dependence is now being quantified from homogeneous data sets: e.g., Chiba & Beers 2000 (Hipparcos, NPM, SPM, the rotation velocity gradient) and Girard et al (SPM, velocity and velocity dispersion gradients). Chiba & Beers 2000

Thick disk (cont.) Girard et al. (2004 and work in progress); SPM + 2MASS toward SGP

3) Galactic Structure: Characterizing the Main Components (cont.) The Bulge/Bar A very complex system where a LOT is happening. Current studies (HST and ground based, e.g. Kuijken 2002, 2004, Zoccali et al 2004, Feltzing & Johnson 2002, Terndrup et al. 1998, Spaenhauer et al. 2002) have focused on determining proper-motion dispersions that are to be matched with dynamical models of the bulge. Currently, there are too few directions sampled in the bulge to allow robust constraints on the models, and there are very few absolute proper-motion studies. Two ongoing programs that can probe a large area of the bulge are: the OGLE proper motion catalog (Sumi et al. 2004, has a 4-yr time baseline!), and absolute proper motions of globular clusters in the bulge (Dinescu et al. 2003).

3) Galactic Structure: Characterizing the Main Components (cont.) Halo See above discussion for the accreted component. For the “traditional” stellar halo - as in the case of the thick disk – there are many “localized” studies that have provided mean velocities and velocity dispersions (most of these are towards the Galactic poles!). Hints that the halo has an inner, dissipational- collapse component and an accreted component are already found in the globular-cluster data and field-star data (Chiba & Beers 2000). However, we lack a satisfactory global kinematical description of the stellar halo, i.e., velocity means and dispersions as a function of galactocentric distance. Chiba & Beers 2000

CONCLUDING REMARKS  In light of the complex picture of the Galaxy that has emerged from all-sky photometric surveys, velocities are key quantities to understand the present structure and the active, dynamical history of the Galaxy. Velocities combined with chemical abundances are the most powerful tool to map out the formation process of the Galaxy. This kind of study is possible only in our Galaxy and perhaps the Local Group, and astrometry has a crucial part to play.  When using proper-motion catalogs/data, it is imperative that the limitations are understood. Search through the descriptions for various tests for systematics!