Spring 2002CS 4611 Internetworking Outline Best Effort Service Model Global Addressing Scheme.

Slides:



Advertisements
Similar presentations
IP/MAC Address Translation
Advertisements

CSE 461: IP/ICMP and the Network Layer. Next Topic  Focus:  How do we build large networks?  Introduction to the Network layer  Internetworks  Service.
CSE331: Introduction to Networks and Security Lecture 8 Fall 2002.
Internet Control Protocols Savera Tanwir. Internet Control Protocols ICMP ARP RARP DHCP.
CSCI 4550/8556 Computer Networks Comer, Chapter 23: An Error Reporting Mechanism (ICMP)
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 11 – February 16, 2010.
1 Internetworking Outline Best Effort Service Model Global Addressing Scheme.
ECE544: Communication Networks-II, Spring 2010 D. Raychaudhuri Lecture 4 Includes teaching materials from L. Peterson.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6961:Internet Protocols Quiz 1: Solutions Time: 60 min (strictly enforced) Points: 50 YOUR.
Spring 2003CS 4611 Internetworking COS 461 Spring 2003.
CSE331: Introduction to Networks and Security Lecture 7 Fall 2002.
CS335 Networking & Network Administration Tuesday, May 11, 2010.
CS Internetworking Slide Set 8. In this set... Addressing Datagram forwarding.
ECE544: Communication Networks-II, Spring 2007 D. Raychaudhuri Lecture 4,5 Includes teaching materials from L. Peterson.
1 ELEN Lecture 13 LAN Bridges Routers, Switches, Gateways Network layer -IP Reading: 6.7,
CSCI-1680 Network Layer: IP & Forwarding Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Rodrigo Fonseca.
26-Aug-154/598N: Computer Networks Recap SBC UUNET Comcast Sprint End Users Internet First mile problem Last mile problem.
TELE202 Lecture 10 Internet Protocols (2) 1 Lecturer Dr Z. Huang Overview ¥Last Lecture »Internet Protocols (1) »Source: chapter 15 ¥This Lecture »Internet.
CS 6401 Internet Protocol Outline Introduction to Internet Protocol Header and address formats ICMP Tools.
ICMP (Internet Control Message Protocol) Computer Networks By: Saeedeh Zahmatkesh spring.
G64INC Introduction to Network Communications Ho Sooi Hock Internet Protocol.
13-Sep-154/598N: Computer Networks Address Translation Map IP addresses into physical addresses –destination host –next hop router Techniques –encode physical.
1 Introduction to Computer Networks University of Ilam By: Dr. Mozafar Bag-Mohammadi Internetworking.
Fall 2010CMSC 1501 Internetworking. Fall 2010CMSC 1502 Assumptions Data pipe from every machine to every other machine. –Need not be single link (and.
A Review of Evolving Network Technology Ethernet & IP J.J. Ekstrom March 2008.
CS 6401 Internetworking Outline Internet Architecture Best Effort Service Model.
A Review of Evolving Network Technology Ethernet & IP With associated infrastructure. J.J. Ekstrom IT 529 Thursday, January 15, 2015.
IP : Internet Protocol Addresses Rsc.Asst.Kamil Serhan Bilman
Fall 2005Computer Networks20-1 Chapter 20. Network Layer Protocols: ARP, IPv4, ICMPv4, IPv6, and ICMPv ARP 20.2 IP 20.3 ICMP 20.4 IPv6.
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
1 Internet Control Message Protocol (ICMP) Used to send error and control messages. It is a necessary part of the TCP/IP suite. It is above the IP module.
Internetworking Internet: A network among networks, or a network of networks Allows accommodation of multiple network technologies Universal Service Routers.
Internetworking Internet: A network among networks, or a network of networks Allows accommodation of multiple network technologies Universal Service Routers.
CSS432: Internetworking 1 CSS432 Internetworking Textbook Ch4.1 Professor: Munehiro Fukuda Augmented by Rob Nash.
ICOM 6115©Manuel Rodriguez-Martinez ICOM 6115 – Computer Networks and the WWW Manuel Rodriguez-Martinez, Ph.D. Lecture 21.
Internet Protocols. Address Resolution IP Addresses are not recognized by hardware. If we know the IP address of a host, how do we find out the hardware.
Fall, 2001CS 6401 Switching, Internet Protocol Outline Quiz 2 Solution Crossbar switch design Knockout switch design Introduction to Internet Protocol.
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
Spring 2010CS 3321 Chapter 4: Internetworking. Spring 2010CS 3322 Assumptions Data pipe from every machine to every other machine. –Need not be single.
1 An Error Reporting Mechanism (ICMP). 2 IP Semantics IP is best-effort Datagrams can be –Lost –Delayed –Duplicated –Delivered out of order –Corrupted.
1 Chapter 23 Internetworking Part 3 (Control Messages, Error Handling, ICMP)
CSC 600 Internetworking with TCP/IP Unit 5: IP, IP Routing, and ICMP (ch. 7, ch. 8, ch. 9, ch. 10) Dr. Cheer-Sun Yang Spring 2001.
Lecture 15 Internetworking: Address Structure Fragmentation and Reassembly.
ICMPv6 Error Message Types Informational Message Types.
1 Introduction to Computer Networks University of Ilam By: Dr. Mozafar Bag-Mohammadi Internetworking.
Address Translation Outline Datalink layer intro ARP RARP DHCP.
1 Internetworking: IP Packet Switching Reading: (except Implementation; pp )
CSS432 Basic Internetworking Textbook Ch3.2
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
Basics of Computer Networks (cont.) CprE 592-YG Computer and Network Forensics Yong Guan 3216 Coover Tel: (515)
1 Internetworking Outline Best Effort Service Model Global Addressing Scheme.
COMPUTER NETWORKS CS610 Lecture-30 Hammad Khalid Khan.
Chapter 20 Network Layer: Internet Protocol Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2002 년 2 학기인터넷통신망 년 2 학기. 인터넷통신망 2 Acknowledgement Some figures and texts are from: –Govindan –Kurose –Peterson & Davie –Huitema –Halabi –Retana,
1 Chapter 23 Internetworking Part 3 (Control Messages, Error Handling, ICMP)
Scaling the Network: The Internet Protocol
IP - The Internet Protocol
CS 457 – Lecture 10 Internetworking and IP
Internet Control Message Protocol (ICMP)
ECE544: Communication Networks-II, Spring 2006
Advanced Computer Networks
Mid term grade distribution
IP : Internet Protocol Surasak Sanguanpong
Internetworking Outline Best Effort Service Model
ECE544: Communication Networks-II, Spring 2016
2. Fragmentation and Reassembly
Internetworking - We are heterogeneity to our network (variable network technologies, bandwidth, MTU, latency, etc. etc.) Goal is to use this opportunity.
Introduction to Computer Networks
Scaling the Network: The Internet Protocol
ITIS 6167/8167: Network and Information Security
Presentation transcript:

Spring 2002CS 4611 Internetworking Outline Best Effort Service Model Global Addressing Scheme

Spring 2002CS 4612 IP Internet Concatenation of Networks Protocol Stack

Spring 2002CS 4613 Service Model Connectionless (datagram-based) Best-effort delivery (unreliable service) –packets are lost –packets are delivered out of order –duplicate copies of a packet are delivered –packets can be delayed for a long time Datagram format

Spring 2002CS 4614 Fragmentation and Reassembly Each network has some MTU (Maximum Transmission Unit) Design decisions –fragment when necessary (MTU < Datagram) –try to avoid fragmentation at source host –re-fragmentation is possible –fragments are self-contained datagrams –use CS-PDU (not cells) for ATM –delay reassembly until destination host –IP does not recover from lost fragments

Spring 2002CS 4615 Example (a) Ident = x Start of header Rest of header 1400 data bytes Offset = 00 (b) Ident = x Start of header Rest of header 512 data bytes Offset = 01 Ident = x Rest of header 512 data bytes Offset = 641 Start of header Ident = x Start of header Rest of header 376 data bytes Offset = 1280

Spring 2002CS 4616 Global Addresses Properties –globally unique –hierarchical: network + host Dot Notation – – – NetworkHost A: NetworkHost B: NetworkHost C:

Spring 2002CS 4617 Datagram Forwarding Strategy –every datagram contains destination’s address –if connected to destination network, then forward to host –if not directly connected, then forward to some router –forwarding table maps network number into next hop –each host has a default router –each router maintains a forwarding table Example (R2) Network Number Next Hop 1 R3 2 R1 3 interface 1 4 interface 0

Spring 2002CS 4618 Address Translation Map IP addresses into physical addresses –destination host –next hop router Techniques –encode physical address in host part of IP address –table-based ARP –table of IP to physical address bindings –broadcast request if IP address not in table –target machine responds with its physical address –table entries are discarded if not refreshed

Spring 2002CS 4619 ARP Details Request Format –HardwareType: type of physical network (e.g., Ethernet) –ProtocolType: type of higher layer protocol (e.g., IP) –HLEN & PLEN: length of physical and protocol addresses –Operation: request or response –Source/Target-Physical/Protocol addresses Notes –table entries timeout in about 10 minutes –update table with source when you are the target –update table if already have an entry –do not refresh table entries if not the target does not have an entry for the source

Spring 2002CS ARP Packet Format TargetHardwareAddr (bytes 2 5) TargetProtocolAddr (bytes 0 3) SourceProtocolAddr (bytes 2 3) Hardware type = 1ProtocolType = 0x0800 SourceHardwareAddr (bytes 4 5) TargetHardwareAddr (bytes 0 1) SourceProtocolAddr (bytes 0 1) HLen = 48PLen = 32Operation SourceHardwareAddr (bytes 0―3) ― ― ―― ― ―

Spring 2002CS Internet Control Message Protocol (ICMP) Echo (ping) Redirect (from router to source host) Destination unreachable (protocol, port, or host) TTL exceeded (so datagrams don’t cycle forever) Checksum failed Reassembly failed Cannot fragment

Spring 2002CS Virtual Networks and Tunnels IP Tunnel: a virtual point-to-point link between a pair of nodes that are actually separated by an arbitrary number of networks.