The Huygens Doppler Wind Experiment: Results from Titan Michael Bird (Radiostronomisches Institut, Universität Bonn) And the DWE Team EGU Vienna - April.

Slides:



Advertisements
Similar presentations
LIGO-G v2 Form F v1 Advanced LIGO1 SCATTERED LIGHT CONTROL in ADVANCED LIGO Michael Smith LIGO Laboratory Caltech, Pasadena, CA.
Advertisements

Science Motivation Comparative planetology of the outer planets is key to understanding the origin & evolution of the solar system S. Atreya (2006) –Deep,
Specular reflectorquasi-specular reflector quasi-Lambert reflector Lambert reflector Limiting Forms of Reflection and Scatter from a Surface.
Using a DPS as a Coherent Scatter HF Radar Lindsay Magnus Lee-Anne McKinnell Hermanus Magnetic Observatory Hermanus, South Africa.
A Preliminary Meteorological Interpretation of Correlated Huygens DWE and HASI Data M. Allison 1, F. Ferri 2, M.K. Bird 3, M. Fulchignoni 4,5, S.W. Asmar.
Radio Acoustic Sounding Techniques for Temperature Profiling Mrs Jyoti Chande Head Atmospheric Remote Sensing Division SAMEER, IIT Campus, Powai, Mumbai.
L.I. Gurvits, S.V. Pogrebenko, I.M. Avruch Joint Institute for VLBI in Europe Dwingeloo, The Netherlands and PRIDE team Space horizons of radio astronomy.
Specular reflectorquasi-specular reflector quasi-Lambert reflector Lambert reflector Limiting Forms of Reflection and Scatter from a Surface.
Global Navigation Satellite Systems Research efforts in Luleå Staffan Backén, LTU Dr. Dennis M. Akos, LTU.
A Preliminary Meteorological Interpretation of Correlated Huygens DWE and HASI Data M. Allison, F. Ferri, M.K. Bird, M. Fulchignoni, S.W. Asmar, D.H. Atkinson,
HSWT#29, Florence February 28, 2005 DWE: Initial Results Michael Bird (Radiostronomisches Institut, Universität Bonn) And the DWE Team.
Saturn.jpl.nasa.gov. Huygens at Titan Paul Withers Boston University Titan – The big questions Huygens mission and instruments First.
Summary of Path Loss in Propagation
Dr. David H. Atkinson Dept. Electrical & Computer Engineering University of Idaho 8 April 2005 Measuring the Zonal Winds on Titan: The Huygens Probe Doppler.
Huygens Ground Track Determination: A Comparison of DWE and DISR Results R. Dutta-Roy, B. Rizk, S.W. Asmar, D.H. Atkinson, M.K. Bird, M.W. Bushroe, E.
A Measurement of Titan´s Zonal Winds by the Huygens Doppler Wind Experiment: Michael Bird (Radiostronomisches Institut, Universität Bonn) And the DWE Team.
Bonn, 25 Jan 2005 Huygens at Titan Michael Bird Radioastronomisches Institut Universität Bonn.
David H. Atkinson Dept of Electrical & Computer Engineering University of Idaho 7 April 2005 Exploration of New Worlds: The Cassini / Huygens Mission to.
EP 8.2: DPG, Berlin - March 7, 2005 The Huygens Doppler Wind Experiment: Initial Results Michael Bird (Radiostronomisches Institut, Universität Bonn) And.
RADIOSCIENCE EXPERIMENTS WITH "MOON-GLOB" ORBITER RECEIVER AND BEACONS ON MOON'S LANDERS A.S. Kosov 1, O.N. Andreev 1, V.M. Aniskovich 1, I.A. Babushkin.
Navigational Aids Know the theory and operation of modern air navigational aids.
Part 4: Exploration 1. Reaction Engine  An engine, such as a jet or rocket engine, that ejects gas at high velocity and develops its thrust from the.
Profilers. Wind profilers are phased array radars that measure the wind as a function of height above a fixed location. Characteristics: Wavelength: 33.
Huygens the Planetary Probe under VLBI Magnifier Leonid Gurvits Joint Institute for VLBI in Europe (JIVE) Dwingeloo, The Netherlands.
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
SVY 207: Lecture 4 GPS Description and Signal Structure
RADAR Detection of Extensive Air Showers Nils Scharf III. Physikalisches Institut A Bad Honnef Nils Scharf III. Physikalisches Institut A Bad.
VLBI Observations of Spacecraft
OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001 Active Microwave Radar.
Recent determination of Gamma with Cassini M.T. Crosta, F. Mignard CNRS-O.C.A. 5th RRFWG, June, Estec.
OBSERVATION OF THE JANUARY 1997 CORONAL MASS EJECTION NEAR THE SUN USING RADIO SOUNDING TECHNIQUE WITH GALILEO SPACECRAFT A.I. Efimov, L.N. Samoznaev,
V. Rudenko (SAI MSU), N. Bartel (York U.), L. Gurvits (JIVE), K. Belousov (ASC), M. Bietenholz (HartRAO), A. Biriukov (ASC), W. Cannon (York U.), G. Cimo’
10. Satellite Communication & Radar Sensors
Profilers & Surface Gauges NE Corner of Stuart Hwy & McMillans 2835-MHz Precip. Profiler: km 920-MHz Wind Profiler: km 50-MHz Wind Profiler:
Ocean Wave and Current Radars By Laura Elston. Our earth is a very aqueous environment with nearly three quarters of it covered by ocean. So how do we.
The Doppler Wind Experiment in the Optical Communications Era Kamal Oudrhiri, Sami Asmar and Bruce Moision June 20, 2013 International Planetary Probe.
Nov 3, 2009 RN - 1 Jet Propulsion Laboratory California Institute of Technology Current Developments for VLBI Data Acquisition Equipment at JPL Robert.
Linear and nonlinear representations of wave fields and their application to processing of radio occultations M. E. Gorbunov, A. V. Shmakov Obukhov Institute.
Atmospheric boundary layers and turbulence I Wind loading and structural response Lecture 6 Dr. J.D. Holmes.
上海天文台 Shanghai Astronomical Observatory 4th IVS General Meeting Spacecraft Tracking with Chinese VLBI Network Xiuzhong Zhang and Chinese VLBI Network Team.
EGU General Assembly 2007 Vienna, Austria, 15 – 20 April Oscillation of Venus’ Upper Atmosphere* Jeffrey M. Forbes Department of Aerospace Engineering.
Modeling the Gulf of Alaska using the ROMS three-dimensional ocean circulation model Yi Chao 1,2,3, John D. Farrara 2, Zhijin Li 1,2, Xiaochun Wang 2,
Investigation of Mixed Layer Depth in the Southern Ocean by using a 1-D mixed layer model Chin-Ying Chien & Kevin Speer Geophysical Fluid Dynamics Institute,
General Frequency Ranges Microwave frequency range –1 GHz to 40 GHz –Directional beams possible –Suitable for point-to-point transmission –Used for satellite.
Key RO Advances Observation –Lower tropospheric penetration (open loop / demodulation) –Larger number of profiles (rising & setting) –Detailed precision.
Mars Data Workshop Mars Express Radio Science MaRS
-1- Solar wind turbulence from radio occultation data Chashei, I.V. Lebedev Physical Institute, Moscow, Russia Efimov, A.I., Institute of Radio Engineering.
Improving GPS RO Stratospheric Retrieval for Climate Benchmarking Chi O. Ao 1, Anthony J. Mannucci 1, E. Robert Kursinski 2 1 Jet Propulsion Laboratory,
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Antennas and Propagation.
Kavaya-1 Coherent Doppler Lidar Roadmap to Both the NRC Decadal Survey “Science Demonstration” and “Operational” Missions Michael J. Kavaya Jirong Yu Upendra.
Quick Review - Fronts. Quick Review - Clouds Using Satellite and Radar Imagery to Find Weather Features.
Signal Propagation Basics
By Saneeju m salu. Radio waves are one form of electromagnetic radiation RADIO WAVES.
Surface Current Mapping in the Lower Chesapeake Bay INTRODUCTION High frequency RADAR antennas are used to observe the surface circulation patterns in.
G. Picardi 1, J. Plaut 2, R. Seu 1, R. Phillips 3, Ali Safaeinili 2, R.Orosei 4, R. Mecozzi 5, R. Croci 5, C. Catallo 5, G. Alberti 6, E. Flamini 7 and.
Real-Time Beyond the Horizon Vessel Detection
Antennas and Propagation
Validation of an ultra high frequency radar (River sonde) for current mapping in the urbanized Hudson River estuary 2010 summer research institute at.
Lutetia Flyby Rosetta Radio Science Investigations RSI
TIMN seminar GNSS Radio Occultation Inversion Methods Thomas Sievert September 12th, 2017 Karlskrona, Sweden.
Signal Propagation Basics
The Development of Broadband VLBI Technologies in SHAO
Methodology for 3D Wind Retrieval from HIWRAP Conical Scan Data:
the University of Oklahoma
Developed by Eastwood Im Jet Propulsion Laboratory
Doppler Dilemma Ideal in forecasting: Would you settle for:
CSE 4215/5431: Mobile Communications Winter 2011
Propagation Effects on Communication Links
Planetary Radio Interferometry and Doppler Experiment (PRIDE)
Presentation transcript:

The Huygens Doppler Wind Experiment: Results from Titan Michael Bird (Radiostronomisches Institut, Universität Bonn) And the DWE Team EGU Vienna - April 25, 2005

Vienna EGU, 25 April Huygens DWE The DWE Team M.K. Bird, R. Dutta-Roy, Y. Dzierma Radioastronomisches Inst., Univ. Bonn, Auf dem Hügel 71, Bonn, Germany M. Allison NASA Goddard Inst. for Space Studies, 2880 Broadway, New York, NY 10025, USA D.H. Atkinson Dept. of Elec. & Computer Engineering, Univ. of Idaho, Moscow, ID 83844, USA S.W. Asmar, W.M. Folkner, D.V. Johnston, R.A. Preston Jet Propulsion Laboratory, Caltech, 4800 Oak Grove Dr, Pasadena, CA 91109, USA P. Edenhofer Institut für HF-Technik, Universität Bochum, Bochum, Germany D. Plettemeier Elektrotechnisches Institut, Technische Univ. Dresden, Dresden, Germany G.L. Tyler Center for Radar Astronomy, Stanford University, Stanford, CA 94305, USA L.I. Gurvits, S.V. Pogrebenko, I.M. Avruch Joint Inst. for VLBI in Europe, P.O. Box 2, 7990 AA Dwingeloo, The Netherlands

Vienna EGU, 25 April Huygens DWE DWE Concept Goal: In situ determination of zonal wind speed along Huygens descent path Approach: Record Doppler effect on Huygens carrier signal => radial velocity Input parameters: 1.Huygens descent speed, meridional speed 2.Huygens starting position 3.Cassini position & velocity

Vienna EGU, 25 April Huygens DWE DWE Hardware TUSO on Huygens Probe RUSO in Huygens Receiver on Cassini Ultra-stable Oscillators (USOs)

Vienna EGU, 25 April Huygens DWE Cassini TCXO RUSO TCXO TUSO Channel B Channel A Earth “Channel C” Huygens Signal paths Huygens Data Huygens Receivers Huygens Probe

Vienna EGU, 25 April Huygens DWE DWE from Earth: Geometry Huygens antenna pointed only ~30° from Earth Better SNR than for Galileo Probe detection at Jupiter Probe velocity projection in direction to Earth nearly antiparallel to projection in direction to Orbiter  20º

Vienna EGU, 25 April Huygens DWE Huygens Radio Tracking Net 10:18 UTC-GRT12:30 UTC-GRT GBT VLBA MK KP PTOV MK Parkes VLBA

Vienna EGU, 25 April Huygens DWE Huygens VLBI Network Facility Start UTCStop UTCComment GBT09:31:1012:15:00 DWE: Real time RSR detection VLBA Fort Davis09:31:1013:45:00 VLBA North Liberty09:31:1013:15:00 VLBA Owens Valley09:30:0914:49:14DWE: No nodding – on Titan continuously VLBA Pie Town09:30:1114:15:04DWE: No nodding – on Titan continuously VLBA Los Alamos09:31:1014:00:00 VLBA Brewster09:31:1014:48:00 VLBA Kitt Peak09:31:1014:15:00DWE VLBA Mauna Kea09:31:1016:00:00DWE Parkes12:26:2316:00:00DWE: Real time RSR detection Hobart11:13:1016:00:00 Ceduna10:13:1016:00:00 Mopra10:10:1016:00:00 Kashima09:31:1016:00:00 Shanghai10:01:1016:00:00 Urumqi11:31:1016:00:00Calibration only, no Huygens signal at 2040 MHz ATCA10:01:1016:00:00Calibration only, no Huygens signal at 2040 MHz Onsala19:01:1022:15:00 Wettzell21:46:1022:15:00

Vienna EGU, 25 April Huygens DWE GBT Parkes

Vienna EGU, 25 April Huygens DWE GBT Huygens! (~ -171 dBm) Flux density  125 Jy 10:18:15 UTC-GRT 10 just noise

Vienna EGU, 25 April Huygens DWE Huygens Frequency: GBT + Parkes

Vienna EGU, 25 April Huygens DWE Huygens Frequency: GBT + predicts

Vienna EGU, 25 April Huygens DWE Huygens Frequency: Parkes + Predicts predicted impact

Vienna EGU, 25 April Huygens DWE Parkes: Huygens Impact on Titan

Vienna EGU, 25 April Huygens DWE Zonal Wind Retrieval Doppler shift: where = radial velocity between transmitter and receiver

Vienna EGU, 25 April Huygens DWE GBT (1) Raw Doppler (2) Only Huygens Motion (3) Huygens Descent Velocity (4) Huygens Horizontal Velocity Doppler Components

Vienna EGU, 25 April Huygens DWE Zonal Wind Velocity

Vienna EGU, 25 April Huygens DWE Zonal Wind Height Profile

Vienna EGU, 25 April Huygens DWE DWE: Preliminary Results Zonal winds above boundary layer are PROGRADE Huygens drifted 3.95º (~175 km) eastward Low-velocity layer between km –Stong positive/negative wind shear –‘Unexpected’, but evident in some models Considerable turbulence above 100 km Near surface winds are weak (~ 1-2 m/s)