CS 152 Computer Architecture and Engineering Lecture 8 Single-Cycle (Con’t) Designing a Multicycle Processor February 23, 2004 John Kubiatowicz ( lecture slides:
CS152 / Kubiatowicz Lec8.2 2/23/04©UCB Spring 2004 Recap: A Single Cycle Datapath °Rs, Rt, Rd and Imed16 hardwired into datapath from Fetch Unit °We have everything except control signals (underline) 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst Extender Mux imm16 ALUSrc ExtOp Mux MemtoReg Clk Data In WrEn 32 Adr Data Memory 32 MemWr ALU Instruction Fetch Unit Clk Equal Instruction Imm16RdRsRt nPC_sel
CS152 / Kubiatowicz Lec8.3 2/23/04©UCB Spring 2004 Recap: Flexible Instruction Fetch °Branch (nPC_sel = “Br”): if (Equal == 1) then PC = PC SignExt[imm16]*4 ; else PC = PC + 4 °Other (nPC_sel = “+4”): PC=PC+4 °What is encoding of nPC_sel? Direct MUX select? Branch / not branch °Let’s choose second option Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_sel imm16 Instruction 0 1 Equal nPC_MUX_sel
CS152 / Kubiatowicz Lec8.4 2/23/04©UCB Spring 2004 Recap: The Single Cycle Datapath during Add 32 ALUctr = Add Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 1 Extender Mux imm16 ALUSrc = 0 ExtOp = x Mux MemtoReg = 0 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Equal Instruction °R[rd] <- R[rs] + R[rt] Imm16RdRsRt oprsrtrdshamtfunct nPC_sel= +4
CS152 / Kubiatowicz Lec8.5 2/23/04©UCB Spring 2004 Recap: The Single Cycle Datapath during Or Immediate 32 ALUctr = Or Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 0 Extender Mux imm16 ALUSrc = 1 ExtOp = 0 Mux MemtoReg = 0 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Equal Instruction °R[rt] <- R[rs] or ZeroExt[Imm16] Imm16RdRsRt oprsrtimmediate nPC_sel= +4
CS152 / Kubiatowicz Lec8.6 2/23/04©UCB Spring 2004 Recap: The Single Cycle Datapath during Load 32 ALUctr = Add Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 0 Extender Mux imm16 ALUSrc = 1 ExtOp = 1 Mux MemtoReg = 1 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Equal Instruction Imm16RdRsRt °R[rt] <- Data Memory {R[rs] + SignExt[imm16]} oprsrtimmediate nPC_sel= +4
CS152 / Kubiatowicz Lec8.7 2/23/04©UCB Spring 2004 Recap: The Single Cycle Datapath during Store 32 ALUctr = Add Clk busW RegWr = 0 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = x Extender Mux imm16 ALUSrc = 1 ExtOp = 1 Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 1 ALU Instruction Fetch Unit Clk Equal Instruction Imm16RdRsRt °Data Memory {R[rs] + SignExt[imm16]} <- R[rt] oprsrtimmediate nPC_sel= +4
CS152 / Kubiatowicz Lec8.8 2/23/04©UCB Spring 2004 Recap: The Single Cycle Datapath during Branch 32 ALUctr =Sub Clk busW RegWr = 0 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = x Extender Mux imm16 ALUSrc = 0 ExtOp = x Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Equal Instruction Imm16RdRsRt °if (R[rs] - R[rt] == 0) then Zero <- 1 ; else Zero <- 0 oprsrtimmediate nPC_sel= “Br”
CS152 / Kubiatowicz Lec8.9 2/23/04©UCB Spring 2004 Recap: A Summary of Control Signals inst Register Transfer ADDR[rd] <– R[rs] + R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4” SUBR[rd] <– R[rs] – R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4” ORiR[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel = “+4” LOADR[rt] <– MEM[ R[rs] + sign_ext(Imm16)];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4” STOREMEM[ R[rs] + sign_ext(Imm16)] <– R[rs];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4” BEQif ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4 nPC_sel = “Br”, ALUctr = “sub”
CS152 / Kubiatowicz Lec8.10 2/23/04©UCB Spring 2004 Step 5: Assemble Control logic ALUctr RegDst ALUSrc ExtOp MemtoRegMemWr Equal Instruction Imm16RdRsRt nPC_sel Adr Inst Memory DATA PATH Decoder Op Fun RegWr
CS152 / Kubiatowicz Lec8.11 2/23/04©UCB Spring 2004 A Summary of the Control Signals addsuborilwswbeq RegDst ALUSrc MemtoReg RegWrite MemWrite nPCsel ExtOp ALUctr x Add x Subtract Or Add x 1 x x 0 x x Subtract optarget address oprsrtrdshamtfunct oprsrt immediate R-type I-type J-type add, sub ori, lw, sw, beq jump func op Appendix A See We Don’t Care :-)
CS152 / Kubiatowicz Lec8.12 2/23/04©UCB Spring 2004 The Concept of Local Decoding Main Control op 6 ALU Control (Local) func N 6 ALUop ALUctr 3 ALU R-typeorilwswbeq RegDst ALUSrc MemtoReg RegWrite MemWrite Branch ExtOp ALUop x “R-type” Or Add x 1 x x 0 x x Subtract op
CS152 / Kubiatowicz Lec8.13 2/23/04©UCB Spring 2004 The Encoding of ALUop °ALUop has to be 2 bits wide to represent: (1) “R-type” instructions “I-type” instructions that require the ALU to perform: -(2) Or, (3) Add, and (4) Subtract Main Control op 6 ALU Control (Local) func N 6 ALUop ALUctr 3 R-typeorilwswbeq ALUop (Symbolic)“R-type”OrAdd Subtract ALUop
CS152 / Kubiatowicz Lec8.14 2/23/04©UCB Spring 2004 The Decoding of the “func” Field Main Control op 6 ALU Control (Local) func N 6 ALUop ALUctr 3 oprsrtrdshamtfunct R-type funct Instruction Operation add subtract and or set-on-less-than ALUctr ALU Operation And Or Add Subtract Set-on-less-than P. 286 text: ALUctr ALU R-typeorilwswbeq ALUop (Symbolic)“R-type”OrAdd Subtract ALUop
CS152 / Kubiatowicz Lec8.15 2/23/04©UCB Spring 2004 The Truth Table for ALUctr R-typeorilwswbeq ALUop (Symbolic) “R-type”OrAdd Subtract ALUop funct Instruction Op add subtract and or set-on-less-than
CS152 / Kubiatowicz Lec8.16 2/23/04©UCB Spring 2004 Step 5: Logic for each control signal `define Rtype 6`b000000; `define BEQ 6`b000100; `defineOri6`b001101; `defineLoad6`b100011; `defineStore6`b101011; … etc … nPC_sel <= (OP == `BEQ) ? `Br : `plus4; ALUsrc <= (OP == `Rtype) ? `regB : `immed; ALUctr <= (OP == `Rtype`) ? funct : (OP == `ORi) ? `ORfunction : (OP == `BEQ) ? `SUBfunction : `ADDfunction; ExtOp <= (OP == `ORi) : `ZEROextend : `SIGNextend; MemWr <= (OP == `Store) ? 1 : 0; MemtoReg<= (OP == `Load) ? 1 : 0; RegWr: <= ((OP == `Store) || (OP == `BEQ)) ? 0 : 1; RegDst: <= ((OP == `Load) || (OP == `ORi)) ? 0 : 1;
CS152 / Kubiatowicz Lec8.17 2/23/04©UCB Spring 2004 The “Truth Table” for the Main Control R-typeorilwswbeq RegDst ALUSrc MemtoReg RegWrite MemWrite nPC_sel Jump ExtOp ALUop (Symbolic) x “R-type” Or Add x 1 x x 0 x x Subtract op ALUop Main Control op 6 ALU Control (Local) func 3 6 ALUop ALUctr 3RegDst ALUSrc :
CS152 / Kubiatowicz Lec8.18 2/23/04©UCB Spring 2004 The “Truth Table” for RegWrite R-typeorilwswbeqjump RegWrite op °RegWrite = R-type + ori + lw = !op & !op & !op & !op & !op & !op (R-type) + !op & !op & op & op & !op & op (ori) + op & !op & !op & !op & op & op (lw) RegWrite
CS152 / Kubiatowicz Lec8.19 2/23/04©UCB Spring 2004 PLA Implementation of the Main Control RegWrite ALUSrc MemtoReg MemWrite Branch Jump RegDst ExtOp ALUop
CS152 / Kubiatowicz Lec8.20 2/23/04©UCB Spring 2004 Administrative Issues °Read Chapter 5 °This lecture and next one slightly different from the book °Design Document for lab 3 due in section this Thursday! Describe your division of labor Your testing methodology (how will you test each step of the way?) Top-level block diagrams °Midterm on Wednesday 3/10 5:30pm to 8:30pm, location TBA No class on that day : Pencil, calculator, one 8.5” x 11” (both sides) of handwritten notes °Meet at LaVal’s pizza after the midterm
CS152 / Kubiatowicz Lec8.21 2/23/04©UCB Spring 2004 The Big Picture: Where are We Now? °The Five Classic Components of a Computer °Today’s Topic: Designing the Datapath for the Multiple Clock Cycle Datapath Control Datapath Memory Processor Input Output
CS152 / Kubiatowicz Lec8.22 2/23/04©UCB Spring 2004 Abstract View of our single cycle processor °looks like a FSM with PC as state PC Next PC Register Fetch ALU Reg. Wrt Mem Access Data Mem Instruction Fetch Result Store ALUctr RegDst ALUSrc ExtOp MemWr Equal nPC_sel RegWr MemWr MemRd Main Control ALU control op fun Ext
CS152 / Kubiatowicz Lec8.23 2/23/04©UCB Spring 2004 What’s wrong with our CPI=1 processor? °Long Cycle Time °All instructions take as much time as the slowest °Real memory is not as nice as our idealized memory cannot always get the job done in one (short) cycle PCInst Memory mux ALUData Mem mux PCReg FileInst Memory mux ALU mux PCInst Memory mux ALUData Mem PCInst Memorycmp mux Reg File Arithmetic & Logical Load Store Branch Critical Path setup
CS152 / Kubiatowicz Lec8.24 2/23/04©UCB Spring 2004 Memory Access Time °Physics => fast memories are small (large memories are slow) question: register file vs. memory °=> Use a hierarchy of memories Storage Array selected word line address storage cell bit line sense amps address decoder Cache Processor 1 time-period proc. bus L2 Cache mem. bus 2-3 time-periods time-periods memory
CS152 / Kubiatowicz Lec8.25 2/23/04©UCB Spring 2004 Reducing Cycle Time °Cut combinational dependency graph and insert register / latch °Do same work in two fast cycles, rather than one slow one °May be able to short-circuit path and remove some components for some instructions! storage element Acyclic Combinational Logic storage element Acyclic Combinational Logic (A) storage element Acyclic Combinational Logic (B)
CS152 / Kubiatowicz Lec8.26 2/23/04©UCB Spring 2004 Worst Case Timing (Load) Clk PC Rs, Rt, Rd, Op, Func Clk-to-Q ALUctr Instruction Memoey Access Time Old ValueNew Value RegWrOld ValueNew Value Delay through Control Logic busA Register File Access Time Old ValueNew Value busB ALU Delay Old ValueNew Value Old ValueNew Value Old Value ExtOpOld ValueNew Value ALUSrcOld ValueNew Value MemtoRegOld ValueNew Value AddressOld ValueNew Value busWOld ValueNew Delay through Extender & Mux Register Write Occurs Data Memory Access Time
CS152 / Kubiatowicz Lec8.27 2/23/04©UCB Spring 2004 Basic Limits on Cycle Time °Next address logic PC <= branch ? PC + offset : PC + 4 °Instruction Fetch InstructionReg <= Mem[PC] °Register Access A <= R[rs] °ALU operation R <= A + B PC Next PC Operand Fetch Exec Reg. File Mem Access Data Mem Instruction Fetch Result Store ALUctr RegDst ALUSrc ExtOp MemWr nPC_sel RegWr MemWr MemRd Control
CS152 / Kubiatowicz Lec8.28 2/23/04©UCB Spring 2004 Partitioning the CPI=1 Datapath °Add registers between smallest steps °Place enables on all registers PC Next PC Operand Fetch Exec Reg. File Mem Access Data Mem Instruction Fetch Result Store ALUctr RegDst ALUSrc ExtOp MemWr nPC_sel RegWr MemWr MemRd Equal
CS152 / Kubiatowicz Lec8.29 2/23/04©UCB Spring 2004 Example Multicycle Datapath °Critical Path ? PC Next PC Operand Fetch Instruction Fetch nPC_sel IR Reg File Ext ALU Reg. File Mem Acces s Data Mem Result Store RegDst RegWr MemWr MemRd S M MemToReg Equal ALUctr ALUSrc ExtOp A B E
CS152 / Kubiatowicz Lec8.30 2/23/04©UCB Spring 2004 Recall: Step-by-step Processor Design Step 1: ISA => Logical Register Transfers Step 2: Components of the Datapath Step 3: RTL + Components => Datapath Step 4: Datapath + Logical RTs => Physical RTs Step 5: Physical RTs => Control
CS152 / Kubiatowicz Lec8.31 2/23/04©UCB Spring 2004 Step 4: R-rtype (add, sub,...) °Logical Register Transfer °Physical Register Transfers inst Logical Register Transfers ADDUR[rd] <– R[rs] + R[rt]; PC <– PC + 4 inst Physical Register Transfers IR <– MEM[pc] ADDUA<– R[rs]; B <– R[rt] S <– A + B R[rd] <– S; PC <– PC + 4 Exec Reg. File Mem Acces s Data Mem SM Reg File PC Next PC IR Inst. Mem Time A B E
CS152 / Kubiatowicz Lec8.32 2/23/04©UCB Spring 2004 Step 4: Logical immed °Logical Register Transfer °Physical Register Transfers inst Logical Register Transfers ORIR[rt] <– R[rs] OR ZExt(Im16); PC <– PC + 4 inst Physical Register Transfers IR <– MEM[pc] ORIA<– R[rs]; B <– R[rt] S <– A or ZExt(Im16) R[rt] <– S; PC <– PC + 4 Exec Reg. File Mem Acces s Data Mem SM Reg File PC Next PC IR Inst. Mem Time A B E
CS152 / Kubiatowicz Lec8.33 2/23/04©UCB Spring 2004 Step 4 : Load °Logical Register Transfer °Physical Register Transfers inst Logical Register Transfers LWR[rt] <– MEM[R[rs] + SExt(Im16)]; PC <– PC + 4 inst Physical Register Transfers IR <– MEM[pc] LWA<– R[rs]; B <– R[rt] S <– A + SExt(Im16) M <– MEM[S] R[rd] <– M; PC <– PC + 4 Exec Reg. File Mem Acces s Data Mem SM Reg File PC Next PC IR Inst. Mem A B E Time
CS152 / Kubiatowicz Lec8.34 2/23/04©UCB Spring 2004 Step 4 : Store °Logical Register Transfer °Physical Register Transfers inst Logical Register Transfers SWMEM[R[rs] + SExt(Im16)] <– R[rt]; PC <– PC + 4 inst Physical Register Transfers IR <– MEM[pc] SWA<– R[rs]; B <– R[rt] S <– A + SExt(Im16); MEM[S] <– BPC <– PC + 4 Exec Reg. File Mem Acces s Data Mem SM Reg File PC Next PC IR Inst. Mem A B E Time
CS152 / Kubiatowicz Lec8.35 2/23/04©UCB Spring 2004 Step 4 : Branch °Logical Register Transfer °Physical Register Transfers inst Logical Register Transfers BEQif R[rs] == R[rt] then PC <= PC + 4+SExt(Im16) || 00 else PC <= PC + 4 Exec Reg. File Mem Acces s Data Mem SM Reg File PC Next PC IR Inst. Mem inst Physical Register Transfers IR <– MEM[pc] BEQE<– (R[rs] = R[rt]) if !E then PC <– PC + 4 else PC <– PC+4+SExt(Im16)||00 A B E Time
CS152 / Kubiatowicz Lec8.36 2/23/04©UCB Spring 2004 Alternative datapath (book): Multiple Cycle Datapath °Miminizes Hardware: 1 memory, 1 adder Ideal Memory WrAdr Din RAdr 32 Dout MemWr 32 ALU 32 ALUOp ALU Control Instruction Reg 32 IRWr 32 Reg File Ra Rw busW Rb busA 32busB RegWr Rs Rt Mux 0 1 Rt Rd PCWr ALUSelA Mux 01 RegDst Mux PC MemtoReg Extend ExtOp Mux Imm 32 << 2 ALUSelB Mux 1 0 Target 32 Zero PCWrCondPCSrcBrWr 32 IorD ALU Out
CS152 / Kubiatowicz Lec8.37 2/23/04©UCB Spring 2004 Our Control Model °State specifies control points for Register Transfer °Transfer occurs upon exiting state (same falling edge) Control State Next State Logic Output Logic inputs (conditions) outputs (control points) State X Register Transfer Control Points Depends on Input
CS152 / Kubiatowicz Lec8.38 2/23/04©UCB Spring 2004 Step 4 Control Specification for multicycle proc IR <= MEM[PC] R-type A <= R[rs] B <= R[rt] S <= A fun B R[rd] <= S PC <= PC + 4 S <= A or ZX R[rt] <= S PC <= PC + 4 ORi S <= A + SX R[rt] <= M PC <= PC + 4 M <= MEM[S] LW S <= A + SX MEM[S] <= B PC <= PC + 4 BEQ PC <= Next(PC,Equal) SW “instruction fetch” “decode / operand fetch” Execute Memory Write-back
CS152 / Kubiatowicz Lec8.39 2/23/04©UCB Spring 2004 Traditional FSM Controller State next State op Equal control points stateopcond next state control points Truth Table datapath State
CS152 / Kubiatowicz Lec8.40 2/23/04©UCB Spring 2004 Step 5 (datapath + state diagram control) °Translate RTs into control points °Assign states °Then go build the controller
CS152 / Kubiatowicz Lec8.41 2/23/04©UCB Spring 2004 Mapping RTs to Control Points IR <= MEM[PC] R-type A <= R[rs] B <= R[rt] S <= A fun B R[rd] <= S PC <= PC + 4 S <= A or ZX R[rt] <= S PC <= PC + 4 ORi S <= A + SX R[rt] <= M PC <= PC + 4 M <= MEM[S] LW S <= A + SX MEM[S] <= B PC <= PC + 4 BEQ PC <= Next(PC,Equal) SW “instruction fetch” “decode” imem_rd, IRen ALUfun, Sen RegDst, RegWr, PCen Aen, Ben, Een Execute Memory Write-back
CS152 / Kubiatowicz Lec8.42 2/23/04©UCB Spring 2004 Assigning States IR <= MEM[PC] R-type A <= R[rs] B <= R[rt] S <= A fun B R[rd] <= S PC <= PC + 4 S <= A or ZX R[rt] <= S PC <= PC + 4 ORi S <= A + SX R[rt] <= M PC <= PC + 4 M <= MEM[S] LW S <= A + SX MEM[S] <= B PC <= PC + 4 BEQ PC <= Next(PC) SW “instruction fetch” “decode” Execute Memory Write-back
CS152 / Kubiatowicz Lec8.43 2/23/04©UCB Spring 2004 (Mostly) Detailed Control Specification (missing 0) 0000??????? BEQx R-typex ORIx LWx SWx xxxxxx x 0 x 0011xxxxxx x 0 x 0100xxxxxxx fun xxxxxxx xxxxxxx or xxxxxxx xxxxxxx add xxxxxxx xxxxxxx xxxxxxx add xxxxxxx StateOp fieldEqNext IRPCOpsExecMemWrite-Back en selA B EEx Sr ALU S R W MM-R Wr Dst R: ORi: LW: SW: -all same in Moore machine BEQ:
CS152 / Kubiatowicz Lec8.44 2/23/04©UCB Spring 2004 Performance Evaluation °What is the average CPI? state diagram gives CPI for each instruction type workload gives frequency of each type TypeCPI i for typeFrequency CPI i x freqI i Arith/Logic440%1.6 Load530%1.5 Store410%0.4 branch320%0.6 Average CPI:4.1
CS152 / Kubiatowicz Lec8.45 2/23/04©UCB Spring 2004 Controller Design °The state digrams that arise define the controller for an instruction set processor are highly structured °Use this structure to construct a simple “microsequencer” °Control reduces to programming this very simple device microprogramming sequencer control datapath control micro-PC sequencer microinstruction
CS152 / Kubiatowicz Lec8.46 2/23/04©UCB Spring 2004 Example: Jump-Counter op-code Map ROM Counter zero inc load 0000 i i+1 i None of above: Do nothing (for wait states)
CS152 / Kubiatowicz Lec8.47 2/23/04©UCB Spring 2004 Using a Jump Counter IR <= MEM[PC] R-type A <= R[rs] B <= R[rt] S <= A fun B R[rd] <= S PC <= PC + 4 S <= A or ZX R[rt] <= S PC <= PC + 4 ORi S <= A + SX R[rt] <= M PC <= PC + 4 M <= MEM[S] LW S <= A + SX MEM[S] <= B PC <= PC + 4 BEQ PC <= Next(PC) SW “instruction fetch” “decode” inc load zero inc Execute Memory Write-back
CS152 / Kubiatowicz Lec8.48 2/23/04©UCB Spring 2004 Our Microsequencer op-code Map ROM Micro-PC Z I L datapath control taken
CS152 / Kubiatowicz Lec8.49 2/23/04©UCB Spring 2004 Microprogram Control Specification 0000?inc load zero zero xinc0 1 fun xzero xinc0 0 or xzero xinc1 0 add xinc xzero xinc1 0 add xzero µPC TakenNext IRPCOpsExecMemWrite-Back en selA B Ex Sr ALU S R W MM-R Wr Dst R: ORi: LW: SW: BEQ
CS152 / Kubiatowicz Lec8.50 2/23/04©UCB Spring 2004 Overview of Control °Control may be designed using one of several initial representations. The choice of sequence control, and how logic is represented, can then be determined independently; the control can then be implemented with one of several methods using a structured logic technique. Initial Representation Finite State Diagram Microprogram Sequencing ControlExplicit Next State Microprogram counter Function + Dispatch ROMs Logic RepresentationLogic EquationsTruth Tables Implementation PLAROM Technique “hardwired control”“microprogrammed control”
CS152 / Kubiatowicz Lec8.51 2/23/04©UCB Spring 2004 Summary °Disadvantages of the Single Cycle Processor Long cycle time Cycle time is too long for all instructions except the Load °Multiple Cycle Processor: Divide the instructions into smaller steps Execute each step (instead of the entire instruction) in one cycle °Partition datapath into equal size chunks to minimize cycle time ~10 levels of logic between latches °Follow same 5-step method for designing “real” processor
CS152 / Kubiatowicz Lec8.52 2/23/04©UCB Spring 2004 Summary (cont’d) °Control is specified by finite state digram °Specialize state-diagrams easily captured by microsequencer simple increment & “branch” fields datapath control fields °Control design reduces to Microprogramming °Control is more complicated with: complex instruction sets restricted datapaths (see the book) °Simple Instruction set and powerful datapath simple control could try to reduce hardware (see the book) rather go for speed => many instructions at once!