Econ 240 C Lecture 13 1. 2 Re-Visit Santa Barbara South Coast House Price Santa Barbara South Coast House Price UC Budget, General Fund UC Budget, General.

Slides:



Advertisements
Similar presentations
Autocorrelation Functions and ARIMA Modelling
Advertisements

Part II – TIME SERIES ANALYSIS C3 Exponential Smoothing Methods © Angel A. Juan & Carles Serrat - UPC 2007/2008.
Forecasting OPS 370.
Slide 1 DSCI 5340: Predictive Modeling and Business Forecasting Spring 2013 – Dr. Nick Evangelopoulos Lecture 7: Box-Jenkins Models – Part II (Ch. 9) Material.
Time Series Building 1. Model Identification
Exponential Smoothing Methods
1 ECON 240C Lecture Outline Box-Jenkins Passengers Box-Jenkins Passengers Displaying the Forecast Displaying the Forecast Recoloring Recoloring.
1 Power Nineteen Econ 240C. 2 Outline Forecast Sources Forecast Sources Ideas that are transcending Ideas that are transcending Symbolic Summary Symbolic.
Forecasting using simple models
Econ 240 C Lecture I. Work in Groups II. You will be graded based on a PowerPoint presentation and a written report. III. Your report should have.
1 Econ 240 C Lecture 3. 2 Part I Modeling Economic Time Series.
1 Econ 240 C Lecture White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output.
Econ 240 C Lecture Project II I. Work in Groups II. You will be graded based on a PowerPoint presentation and a written report. III. Your report.
1 Econ 240 C Lecture Time Series Concepts Analysis and Synthesis.
1 Lecture Eleven Econ 240C. 2 Outline Review Stochastic Time Series –White noise –Random walk –ARONE: –ARTWO –ARTHREE –ARMA(2,2) –MAONE*SMATWELVE.
Econ 240C Lecture Review 2002 Final Ideas that are transcending p. 15 Economic Models of Time Series Symbolic Summary.
1 Midterm Review. 2 Outline The Triangle of Stability - Power 7 The Triangle of Stability - Power 7 Augmented Dickey-Fuller Tests – Power 10 Augmented.
1 Power 2 Econ 240C. 2 Lab 1 Retrospective Exercise: –GDP_CAN = a +b*GDP_CAN(-1) + e –GDP_FRA = a +b*GDP_FRA(-1) + e.
1 Econ 240C Lecture Five Outline w Box-Jenkins Models w Time Series Components Model w Autoregressive of order one.
1 Econ 240 C Lecture 3. 2 Time Series Concepts Analysis and Synthesis.
Econ 240 C Lecture Outline Exponential Smoothing Exponential Smoothing Back of the envelope formula: geometric distributed lag: L(t) = a*y(t-1)
MOVING AVERAGES AND EXPONENTIAL SMOOTHING
1 Econ 240C Lecture Five. 2 Outline w Box-Jenkins Models: the grand design w What do you need to learn? w Preview of partial autocorrelation function.
1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.
1 ECON 240C Lecture 8. 2 Part I. Economic Forecast Project Santa Barbara County Seminar –April 17, 2003 URL:
1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: change in housing starts Example: change in housing.
ARIMA Forecasting Lecture 7 and 8 - March 14-16, 2011
1 Econ 240C Lecture Five Outline w Box-Jenkins Models w Time Series Components Model w Autoregressive of order one.
1 Economics 240A Power Eight. 2 Outline n Maximum Likelihood Estimation n The UC Budget Again n Regression Models n The Income Generating Process for.
1 ECON 240C Lecture 8. 2 Part I. Economic Forecast Project Santa Barbara County Seminar Santa Barbara County Seminar  April 22, 2004 (April 17, 2003)
1 Econ 240A Power 7. 2 This Week, So Far §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and Hypothesis Testing.
1 Lab Four Postscript Econ 240 C. 2 Airline Passengers.
1 Regression Econ 240A. 2 Retrospective w Week One Descriptive statistics Exploratory Data Analysis w Week Two Probability Binomial Distribution w Week.
1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: change in housing starts Example: change in housing.
Econ 240 C Lecture Part I: Exponential Smoothing Exponential smoothing is a technique that is useful for forecasting short time series where there.
Business Forecasting Chapter 5 Forecasting with Smoothing Techniques.
Slides 13b: Time-Series Models; Measuring Forecast Error
MOVING AVERAGES AND EXPONENTIAL SMOOTHING. Forecasting methods: –Averaging methods. Equally weighted observations –Exponential Smoothing methods. Unequal.
© 2003 Prentice-Hall, Inc.Chap 12-1 Business Statistics: A First Course (3 rd Edition) Chapter 12 Time-Series Forecasting.
Constant process Separate signal & noise Smooth the data: Backward smoother: At any give T, replace the observation yt by a combination of observations.
BOX JENKINS METHODOLOGY
Winter’s Exponential smoothing
Time series Decomposition Farideh Dehkordi-Vakil.
1 Given the following data, calculate forecasts for months April through June using a three- month moving average and an exponential smoothing forecast.
Time-Series Forecasting Overview Moving Averages Exponential Smoothing Seasonality.
Slide 1 DSCI 5340: Predictive Modeling and Business Forecasting Spring 2013 – Dr. Nick Evangelopoulos Lecture 5: Exponential Smoothing (Ch. 8) Material.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
MARKET APPRAISAL. Steps in Market Appraisal Situational Analysis and Specification of Objectives Collection of Secondary Information Conduct of Market.
1 BABS 502 Moving Averages, Decomposition and Exponential Smoothing Revised March 14, 2010.
The Box-Jenkins (ARIMA) Methodology
Forecasting Demand. Forecasting Methods Qualitative – Judgmental, Executive Opinion - Internal Opinions - Delphi Method - Surveys Quantitative - Causal,
Irwin/McGraw-Hill © Andrew F. Siegel, 1997 and l Chapter 14 l Time Series: Understanding Changes over Time.
1 Econ 240C Lecture Five. 2 Part I: Time Series Components Model w The conceptual framework for inertial (mechanical) time series models: w Time series.
Forecasting Demand. Problems with Forecasts Forecasts are Usually Wrong. Every Forecast Should Include an Estimate of Error. Forecasts are More Accurate.
Time Series Analysis PART II. Econometric Forecasting Forecasting is an important part of econometric analysis, for some people probably the most important.
Forecasting Methods Dr. T. T. Kachwala.
Forecasting techniques
Chapter 6: Autoregressive Integrated Moving Average (ARIMA) Models
John Loucks St. Edward’s University . SLIDES . BY.
Econ 240 C Lecture 4.
Econ 240C Lecture 18.
ECON 240C Lecture 7.
MOVING AVERAGES AND EXPONENTIAL SMOOTHING
Exponential Smoothing
Unit Root & Augmented Dickey-Fuller (ADF) Test
Forecasting - Introduction
Exponential smoothing
BOX JENKINS (ARIMA) METHODOLOGY
Chap 4: Exponential Smoothing
Exponential Smoothing
Presentation transcript:

Econ 240 C Lecture 13 1

2 Re-Visit Santa Barbara South Coast House Price Santa Barbara South Coast House Price UC Budget, General Fund UC Budget, General Fund Exponential Smoothing, p.43- Exponential Smoothing, p Intervention Analysis Intervention Analysis

3 Thousands of Nominal Dollars

4

5

6

8

9 UC Budget Vs. CA Personal Income

10 CA General Fund Expenditures Vs. Personal Income

11 Relative Size of CA Government

12 CA Personal Income, Nominal $

13 Outline Exponential Smoothing Exponential Smoothing Back of the envelope formula: geometric distributed lag: L(t) = a*y(t-1) + (1-a)*L(t-1); F(t) = L(t) Back of the envelope formula: geometric distributed lag: L(t) = a*y(t-1) + (1-a)*L(t-1); F(t) = L(t) ARIMA (p,d,q) = (0,1,1); ∆y(t) = e(t) –(1-a)e(t-1) ARIMA (p,d,q) = (0,1,1); ∆y(t) = e(t) –(1-a)e(t-1) Error correction: L(t) =L(t-1) + a*e(t) Error correction: L(t) =L(t-1) + a*e(t) Intervention Analysis Intervention Analysis

14 Part I: Exponential Smoothing Exponential smoothing is a technique that is useful for forecasting short time series where there may not be enough observations to estimate a Box-Jenkins model Exponential smoothing is a technique that is useful for forecasting short time series where there may not be enough observations to estimate a Box-Jenkins model Exponential smoothing can be understood from many perspectives; one perspective is a formula that could be calculated by hand Exponential smoothing can be understood from many perspectives; one perspective is a formula that could be calculated by hand

15

16 Three Rates of Growth

17

18 Simple exponential smoothing Simple exponential smoothing, also known as single exponential smoothing, is most appropriate for a time series that is a random walk with first order moving average error structure Simple exponential smoothing, also known as single exponential smoothing, is most appropriate for a time series that is a random walk with first order moving average error structure The levels term, L(t), is a weighted average of the observation lagged one, y(t-1) plus the previous levels, L(t-1): The levels term, L(t), is a weighted average of the observation lagged one, y(t-1) plus the previous levels, L(t-1): L(t) = a*y(t-1) + (1-a)*L(t-1) L(t) = a*y(t-1) + (1-a)*L(t-1)

19 Single exponential smoothing The parameter a is chosen to minimize the sum of squared errors where the error is the difference between the observation and the levels term: e(t) = y(t) – L(t) The parameter a is chosen to minimize the sum of squared errors where the error is the difference between the observation and the levels term: e(t) = y(t) – L(t) The forecast for period t+1 is given by the formula: L(t+1) = a*y(t) + (1-a)*L(t) The forecast for period t+1 is given by the formula: L(t+1) = a*y(t) + (1-a)*L(t) Example from John Heinke and Arthur Reitsch, Business Forecasting, 6 th Ed. Example from John Heinke and Arthur Reitsch, Business Forecasting, 6 th Ed.

20 observationsSales

21 Single exponential smoothing For observation #1, set L(1) = Sales(1) = 500, as an initial condition For observation #1, set L(1) = Sales(1) = 500, as an initial condition As a trial value use a = 0.1 As a trial value use a = 0.1 So L(2) = 0.1*Sales(1) + 0.9*Level(1) L(2) = 0.1* *500 = 500 So L(2) = 0.1*Sales(1) + 0.9*Level(1) L(2) = 0.1* *500 = 500 And L(3) = 0.1*Sales(2) + 0.9*Level(2) L(3) = 0.1* *500 = 485 And L(3) = 0.1*Sales(2) + 0.9*Level(2) L(3) = 0.1* *500 = 485

22 observationsSalesLevel

23 observationsSalesLevel a = 0.1

24 Single exponential smoothing So the formula can be used to calculate the rest of the levels values, observation #4-#24 So the formula can be used to calculate the rest of the levels values, observation #4-#24 This can be set up on a spread-sheet This can be set up on a spread-sheet

25 observationsSalesLevel a = 0.1

26 Single exponential smoothing The forecast for observation #25 is: L(25) = 0.1*sales(24)+0.9*L(24) The forecast for observation #25 is: L(25) = 0.1*sales(24)+0.9*L(24) Forecast(25)=Levels(25)=0.1* *449 Forecast(25)=Levels(25)=0.1* *449 Forecast(25) = Forecast(25) = 469.1

28 Single exponential distribution The errors can now be calculated: e(t) = sales(t) – levels(t) The errors can now be calculated: e(t) = sales(t) – levels(t)

29 observationsSalesLevelerror a = 0.1

30 observationsSalesLevelerror error squared a = 0.1

31 observationsSalesLevelerror error squared sum sq res a = 0.1

32 Single exponential smoothing For a = 0.1, the sum of squared errors is:  errors) 2 = 582,281.2 For a = 0.1, the sum of squared errors is:  errors) 2 = 582,281.2 A grid search can be conducted for the parameter value a, to find the value between 0 and 1 that minimizes the sum of squared errors A grid search can be conducted for the parameter value a, to find the value between 0 and 1 that minimizes the sum of squared errors The calculations of levels, L(t), and errors, e(t) = sales(t) – L(t) for a =0.6 The calculations of levels, L(t), and errors, e(t) = sales(t) – L(t) for a =0.6

33 observa tionsSalesLevels a = 0.6

34 Single exponential smoothing Forecast(25) = Levels(25) = 0.6*sales(24) + 0.4*levels(24) = 0.6* *465 = 776 Forecast(25) = Levels(25) = 0.6*sales(24) + 0.4*levels(24) = 0.6* *465 = 776

35 observa tionsSalesLevelserror error square Sum of Sq Res a = 0.6

36 Single exponential smoothing Grid search plot Grid search plot

38 Single Exponential Smoothing EVIEWS: Algorithmic search for the smoothing parameter a EVIEWS: Algorithmic search for the smoothing parameter a In EVIEWS, select time series sales(t), and open In EVIEWS, select time series sales(t), and open In the sales window, go to the PROCS menu and select exponential smoothing In the sales window, go to the PROCS menu and select exponential smoothing Select single Select single the best parameter a = 0.26 with sum of squared errors = and root mean square error = = ( /24) 1/2 the best parameter a = 0.26 with sum of squared errors = and root mean square error = = ( /24) 1/2 The forecast, or end of period levels mean = The forecast, or end of period levels mean = 532.4

39

40

41 Forecast = L(25) = 0.26*Sales(24) L(24) = =0.26* * =532.4

42

43 Part II. Three Perspectives on Single Exponential Smoothing The formula perspective The formula perspective L(t) = a*y(t-1) + (1 - a)*L(t-1) L(t) = a*y(t-1) + (1 - a)*L(t-1) e(t) = y(t) - L(t) e(t) = y(t) - L(t) The Box-Jenkins Perspective The Box-Jenkins Perspective The Updating Forecasts Perspective The Updating Forecasts Perspective

44 Box Jenkins Perspective Use the error equation to substitute for L(t) in the formula, L(t) = a*y(t-1) + (1 - a)*L(t-1) Use the error equation to substitute for L(t) in the formula, L(t) = a*y(t-1) + (1 - a)*L(t-1) L(t) = y(t) - e(t) L(t) = y(t) - e(t) y(t) - e(t) = a*y(t-1) + (1 - a)*[y(t-1) - e(t-1)] y(t) = e(t) + y(t-1) - (1-a)*e(t-1) y(t) - e(t) = a*y(t-1) + (1 - a)*[y(t-1) - e(t-1)] y(t) = e(t) + y(t-1) - (1-a)*e(t-1) or  y(t) = y(t) - y(t-1) = e(t) - (1-a) e(t-1) or  y(t) = y(t) - y(t-1) = e(t) - (1-a) e(t-1) So y(t) is a random walk plus MAONE noise, i.e y(t) is a (0,1,1) process where (p,d,q) are the orders of AR, differencing, and MA. So y(t) is a random walk plus MAONE noise, i.e y(t) is a (0,1,1) process where (p,d,q) are the orders of AR, differencing, and MA.

45 Box-Jenkins Perspective In Lab Seven, we will apply simple exponential smoothing to retail sales, and which can be modeled as (0,1,1). In Lab Seven, we will apply simple exponential smoothing to retail sales, and which can be modeled as (0,1,1).

46

47

48

50

51 Box-Jenkins Perspective If the smoothing parameter approaches one, then y(t) is a random walk: If the smoothing parameter approaches one, then y(t) is a random walk:  y(t) = y(t) - y(t-1) = e(t) - (1-a) e(t-1)  y(t) = y(t) - y(t-1) = e(t) - (1-a) e(t-1) if a = 1, then  y(t) = y(t) - y(t-1) = e(t) if a = 1, then  y(t) = y(t) - y(t-1) = e(t) In Lab Seven, we will use the price of gold to make this point In Lab Seven, we will use the price of gold to make this point

52

53

54

55

56 Box-Jenkins Perspective The levels or forecast, L(t), is a geometric distributed lag of past observations of the series, y(t), hence the name “exponential” smoothing The levels or forecast, L(t), is a geometric distributed lag of past observations of the series, y(t), hence the name “exponential” smoothing L(t) = a*y(t-1) + (1 - a)*L(t-1) L(t) = a*y(t-1) + (1 - a)*L(t-1) L(t) = a*y(t-1) + (1 - a)*ZL(t) L(t) = a*y(t-1) + (1 - a)*ZL(t) L(t) - (1 - a)*ZL(t) = a*y(t-1) L(t) - (1 - a)*ZL(t) = a*y(t-1) [1 - (1-a)Z] L(t) = a*y(t-1) [1 - (1-a)Z] L(t) = a*y(t-1) L(t) = {1/ [1 - (1-a)Z]} a*y(t-1) L(t) = {1/ [1 - (1-a)Z]} a*y(t-1) L(t) = [1 +(1-a)Z + (1-a) 2 Z 2 + …] a*y(t-1) L(t) = [1 +(1-a)Z + (1-a) 2 Z 2 + …] a*y(t-1) L(t) = a*y(t-1) + (1-a)*a*y(t-2) + (1-a) 2 a*y(t-3) + …. L(t) = a*y(t-1) + (1-a)*a*y(t-2) + (1-a) 2 a*y(t-3) + ….

57

58 The Updating Forecasts Perspective Use the error equation to substitute for y(t) in the formula, L(t) = a*y(t-1) + (1 - a)*L(t-1) Use the error equation to substitute for y(t) in the formula, L(t) = a*y(t-1) + (1 - a)*L(t-1) y(t) = L(t) + e(t) y(t) = L(t) + e(t) L(t) = a*[L(t-1) + e(t-1)] + (1 - a)*L(t-1) L(t) = a*[L(t-1) + e(t-1)] + (1 - a)*L(t-1) So L(t) = L(t-1) + a*e(t-1), So L(t) = L(t-1) + a*e(t-1), i.e. the forecast for period t is equal to the forecast for period t-1 plus a fraction a of the forecast error from period t-1. i.e. the forecast for period t is equal to the forecast for period t-1 plus a fraction a of the forecast error from period t-1.

59 Part III. Double Exponential Smoothing With double exponential smoothing, one estimates a “trend” term, R(t), as well as a levels term, L(t), so it is possible to forecast, f(t), out more than one period With double exponential smoothing, one estimates a “trend” term, R(t), as well as a levels term, L(t), so it is possible to forecast, f(t), out more than one period f(t+k) = L(t) + k*R(t), k>=1 f(t+k) = L(t) + k*R(t), k>=1 L(t) = a*y(t) + (1-a)*[L(t-1) + R(t-1)] L(t) = a*y(t) + (1-a)*[L(t-1) + R(t-1)] R(t) = b*[L(t) - L(t-1)] + (1-b)*R(t-1) R(t) = b*[L(t) - L(t-1)] + (1-b)*R(t-1) so the trend, R(t), is a geometric distributed lag of the change in levels,  L(t) so the trend, R(t), is a geometric distributed lag of the change in levels,  L(t)

60 If the smoothing parameters a = b, then we have double exponential smoothing If the smoothing parameters a = b, then we have double exponential smoothing If the smoothing parameters are different, then it is the simplest version of Holt- Winters smoothing If the smoothing parameters are different, then it is the simplest version of Holt- Winters smoothing Part III. Double Exponential Smoothing

61 Part III. Double Exponential Smoothing Holt- Winters can also be used to forecast seasonal time series, e.g. monthly Holt- Winters can also be used to forecast seasonal time series, e.g. monthly f(t+k) = L(t) + k*R(t) + S(t+k-12) k>=1 f(t+k) = L(t) + k*R(t) + S(t+k-12) k>=1 L(t) = a*[y(t)-S(t-12)]+ (1-a)*[L(t-1) + R(t-1)] L(t) = a*[y(t)-S(t-12)]+ (1-a)*[L(t-1) + R(t-1)] R(t) = b*[L(t) - L(t-1)] + (1-b)*R(t-1) R(t) = b*[L(t) - L(t-1)] + (1-b)*R(t-1) S(t) = c*[y(t) - L(t)] + (1-c)*S(t-12) S(t) = c*[y(t) - L(t)] + (1-c)*S(t-12)

62 Part V. Intervention Analysis

63 Intervention Analysis The approach to intervention analysis parallels Box-Jenkins in that the actual estimation is conducted after pre- whitening, to the extent that non- stationarity such as trend and seasonality are removed The approach to intervention analysis parallels Box-Jenkins in that the actual estimation is conducted after pre- whitening, to the extent that non- stationarity such as trend and seasonality are removed Example: preview of Lab 7 Example: preview of Lab 7

64 Telephone Directory Assistance A telephone company was receiving increased demand for free directory assistance, i.e. subscribers asking operators to look up numbers. This was increasing costs and the company changed policy, providing a number of free assisted calls to subscribers per month, but charging a price per call after that number. A telephone company was receiving increased demand for free directory assistance, i.e. subscribers asking operators to look up numbers. This was increasing costs and the company changed policy, providing a number of free assisted calls to subscribers per month, but charging a price per call after that number.

65 Telephone Directory Assistance This policy change occurred at a known time, March 1974 This policy change occurred at a known time, March 1974 The time series is for calls with directory assistance per month The time series is for calls with directory assistance per month Did the policy change make a difference? Did the policy change make a difference?

66

67 The simple-minded approach  =  =387

68

69

70

71 Principle The event may cause a change, and affect time series characteristics The event may cause a change, and affect time series characteristics Consequently, consider the pre-event period, January 1962 through February 1974, the event March 1974, and the post-event period, April 1974 through December 1976 Consequently, consider the pre-event period, January 1962 through February 1974, the event March 1974, and the post-event period, April 1974 through December 1976 First difference and then seasonally difference the entire series First difference and then seasonally difference the entire series

72 Analysis: Entire Differenced Series

73

74

75

76

77 Analysis: Pre-Event Differences

78

79

80

81 So Seasonal Nonstationarity It was masked in the entire sample by the variance caused by the difference from the event It was masked in the entire sample by the variance caused by the difference from the event The seasonality was revealed in the pre- event differenced series The seasonality was revealed in the pre- event differenced series

82

83 Pre-Event Analysis Seasonally differenced, differenced series Seasonally differenced, differenced series

84

85

86

87

88 Pre-Event Box-Jenkins Model [1-Z 12 ][1 –Z]Assist(t) = WN(t) – a*WN(t-12) [1-Z 12 ][1 –Z]Assist(t) = WN(t) – a*WN(t-12)

89

90

91

92 Modeling the Event Step function Step function

93 Entire Series Assist and Step Assist and Step Dassist and Dstep Dassist and Dstep Sddast sddstep Sddast sddstep

94

95

96

97 Model of Series and Event Pre-Event Model: [1-Z 12 ][1 –Z]Assist(t) = WN(t) – a*WN(t-12) Pre-Event Model: [1-Z 12 ][1 –Z]Assist(t) = WN(t) – a*WN(t-12) In Levels Plus Event: Assist(t)=[WN(t) – a*WN(t-12)]/[1-Z]*[1-Z 12 ] + (-b)*step In Levels Plus Event: Assist(t)=[WN(t) – a*WN(t-12)]/[1-Z]*[1-Z 12 ] + (-b)*step Estimate: [1-Z 12 ][1 –Z]Assist(t) = WN(t) – a*WN(t-12) + (-b)* [1-Z 12 ][1 –Z]*step Estimate: [1-Z 12 ][1 –Z]Assist(t) = WN(t) – a*WN(t-12) + (-b)* [1-Z 12 ][1 –Z]*step

98

99

100 Policy Change Effect Simple: decrease of 387 (thousand) calls per month Simple: decrease of 387 (thousand) calls per month Intervention model: decrease of 397 with a standard error of 22 Intervention model: decrease of 397 with a standard error of 22

101

102 Stochastic Trends: Random Walks with Drift We have discussed earlier in the course how to model the Total Return to the Standard and Poor’s 500 Index We have discussed earlier in the course how to model the Total Return to the Standard and Poor’s 500 Index One possibility is this time series could be a random walk around a deterministic trend” One possibility is this time series could be a random walk around a deterministic trend” Sp500(t) = exp{a + d*t +WN(t)/[1-Z]} Sp500(t) = exp{a + d*t +WN(t)/[1-Z]} And taking logarithms, And taking logarithms,

103 Stochastic Trends: Random Walks with Drift Lnsp500(t) = a + d*t + WN(t)/[1-Z] Lnsp500(t) = a + d*t + WN(t)/[1-Z] Lnsp500(t) –a –d*t = WN(t)/[1-Z] Lnsp500(t) –a –d*t = WN(t)/[1-Z] Multiplying through by the difference operator,  = [1-Z] Multiplying through by the difference operator,  = [1-Z] [1-Z][Lnsp500(t) –a –d*t] = WN(t-1) [1-Z][Lnsp500(t) –a –d*t] = WN(t-1) [LnSp500(t) – a –d*t] - [LnSp500(t-1) – a –d*(t- 1)] = WN(t) [LnSp500(t) – a –d*t] - [LnSp500(t-1) – a –d*(t- 1)] = WN(t)  Lnsp500(t) = d + WN(t)  Lnsp500(t) = d + WN(t)

104 So the fractional change in the total return to the S&P 500 is drift, d, plus white noise So the fractional change in the total return to the S&P 500 is drift, d, plus white noise More generally, More generally, y(t) = a + d*t + {1/[1-Z]}*WN(t) y(t) = a + d*t + {1/[1-Z]}*WN(t) [y(t) –a –d*t] = {1/[1-Z]}*WN(t) [y(t) –a –d*t] = {1/[1-Z]}*WN(t) [y(t) –a –d*t]- [y(t-1) –a –d*(t-1)] = WN(t) [y(t) –a –d*t]- [y(t-1) –a –d*(t-1)] = WN(t) [y(t) –a –d*t]= [y(t-1) –a –d*(t-1)] + WN(t) [y(t) –a –d*t]= [y(t-1) –a –d*(t-1)] + WN(t) Versus the possibility of an ARONE: Versus the possibility of an ARONE:

105 [y(t) –a –d*t]=b*[y(t-1)–a–d*(t-1)]+WN(t) [y(t) –a –d*t]=b*[y(t-1)–a–d*(t-1)]+WN(t) Y(t) = a + d*t + b*[y(t-1)–a–d*(t-1)]+WN(t) Y(t) = a + d*t + b*[y(t-1)–a–d*(t-1)]+WN(t) Or y(t) = [a*(1-b)+b*d]+[d*(1-b)]*t+b*y(t-1) +wn(t) Or y(t) = [a*(1-b)+b*d]+[d*(1-b)]*t+b*y(t-1) +wn(t) Subtracting y(t-1) from both sides’ Subtracting y(t-1) from both sides’  y(t) = [a*(1-b)+b*d] + [d*(1-b)]*t + (b-1)*y(t-1) +wn(t)  y(t) = [a*(1-b)+b*d] + [d*(1-b)]*t + (b-1)*y(t-1) +wn(t) So the coefficient on y(t-1) is once again interpreted as b-1, and we can test the null that this is zero against the alternative it is significantly negative. Note that we specify the equation with both a constant, So the coefficient on y(t-1) is once again interpreted as b-1, and we can test the null that this is zero against the alternative it is significantly negative. Note that we specify the equation with both a constant, [a*(1-b)+b*d] and a trend [d*(1-b)]*t [a*(1-b)+b*d] and a trend [d*(1-b)]*t

106 Part IV. Dickey Fuller Tests: Trend

107 Example Lnsp500(t) from Lab 2 Lnsp500(t) from Lab 2

108

109

110

111