Independent Assortment

Slides:



Advertisements
Similar presentations
Exploring Mendelian Genetics
Advertisements

Exploring Mendelian Genetics
11-3 Exploring Mendelian Genetics
11-1 The Work of Gregor Mendel
Chapter 11-3: Exploring Mendelian Genetics. To determine if the segregation of one pair of alleles affects the segregation of another pair of alleles,
INCOMPLETE DOMINANCE AND CODOMINANCE 1. INCOMPLETE DOMINANCE  Neither allele has “complete” dominance over the other; heterozygous phenotype is a blend.
Mendel wondered if genes that determine different traits affect one another. He did an experiment to find out. Mendel found that the gene for seed shape.
Copyright Pearson Prentice Hall
Exploring Mendelian Genetics
Chapter 11-3: Exploring Mendelian Genetics. To determine if the segregation of one pair of alleles affects the segregation of another pair of alleles,
11-3 Exploring Mendelian Genetics Page 270. Think about it…. Mendel wondered if alleles sorted independently… ….for example… “…is the gene for green/yellow.
End Show Slide 1 of 31 Copyright Pearson Prentice Hall Biology.
Exploring Mendelian Genetics Section 11-3 Objectives: 7.0 Apply Mendel's law to determine phenotypic and genotypic probabilities of offspring. 7.1 Defining.
Chapter 8 Introduction to Genetics
 Independent Assortment- Genes that segregate (separately) independently do not influence each other's inheritance.  The principle of independent.
Slide 1 of 31 Copyright Pearson Prentice Hall 11-3 Exploring Mendelian Genetics 11–3 Exploring Mendelian Genetics.
End Show Slide 1 of 31 Copyright Pearson Prentice Hall 11-3 Exploring Mendelian Genetics 11–3 Exploring Mendelian Genetics.
 Genetics often comes down to probability  Mendel stated that traits in an organism are controlled by different factors ◦ We know that each allele is.
WHAT IS PROBABILITY? Punnett Squares & Probability.
Section 11-3 Exploring Mendelian Genetics Wanted To Know If: Segregation Was Truly Independent or Does The Segregation Of One Pair Of Alleles Affect.
Slide 1 of 31 Copyright Pearson Prentice Hall Biology.
Genetics Genetics is the scientific study of heredity. Chapter 11 Sections 1-3.
The Work of Gregor Mendel & Applying Mendel’s PrinciplesGregor Mendel Unit 5C Genetic Inheritance.
Exploring Mendelian Genetics. Independent Assortment Does the segregation of one pair of alleles affect the segregation of another pair of alleles? –Mendel.
Genetics the scientific study of heredity.
11-3: Exploring Mendelian Genetics Objectives:  Explain the principle of independent assortment.  Describe the inheritance patterns that exist aside.
Mendelian Exceptions Chapter 11 Section 3. Mendel’s Principles Revisited Inheritance of biological _____________ is determined by individual units known.
Chapter 11: Intro to Genetics 11-3 Other Patterns of Inheritance.
11-3 Exploring Mendelian Genetics More Mendelian Genetics.
Co-dominance, Incomplete Dominance, Polygenic Traits, and Multiple Alleles More about Mendel:: The Principle of Independent Assortment: genes for different.
Introduction to Genetics Chapter 11 Copyright Pearson Prentice Hall.
End Show Slide 1 of Exploring Mendelian Genetics 11–3 Exploring Mendelian Genetics.
Probability  The principles of probability can be used to predict the outcomes of genetic crosses  Think of probability like flipping a coin. If you.
Incomplete Dominance Neither allele is dominant over the other
11-2 Probability and Punnett Squares
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Biology Mr. Karns Mendels Laws.
Copyright Pearson Prentice Hall
Exploring Mendelian Genetics
Copyright Pearson Prentice Hall
11-3 Exploring Mendelian Genetics
Copyright Pearson Prentice Hall
11-3 Exploring Mendelian Genetics
Exploring Mendelian Genetics
11-3 Exploring Mendelian Genetics & 11-5 Linkage/Gene Maps
Modes of Inheritance.
Mendelian Genetics Chapter 11 Section 3.
Copyright Pearson Prentice Hall
Outline 11-3A Studying Heredity
11-3 Exploring Mendelian Genetics
Punnett Squares & Probability
Incomplete Dominance and Codominance
Bellwork: Thurs. Jan. 18, 2018 Dihybrid: 2-Factor Cross: First Generation: F1   Mendel crossed true-breeding plants that produced round yellow peas (genotype.
Punnett Squares & Probability
11-3 Exploring Mendelian Genetics
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Bellwork: Mon. Jan. 23, 2017 Dihybrid: 2-Factor Cross: First Generation: F1   Mendel crossed true-breeding plants that produced round yellow peas (genotype.
Exploring Mendelian Genetics
11-3 Exploring Mendelian Genetics
11-3 Exploring Mendelian Genetics
Copyright Pearson Prentice Hall
Punnett Squares & Probability
Copyright Pearson Prentice Hall
Review What does homozygous dominant mean?
Independent Assortment
Punnett Squares & Probability
Copyright Pearson Prentice Hall
Presentation transcript:

Independent Assortment To determine if the segregation of one pair of alleles affects the segregation of another pair of alleles, Mendel performed a two-factor cross. Copyright Pearson Prentice Hall

Independent Assortment The Two-Factor Cross: F1   Mendel crossed true-breeding plants that produced round yellow peas (genotype RRYY) with true-breeding plants that produced wrinkled green peas (genotype rryy). All of the F1 offspring produced round yellow peas (RrYy). Copyright Pearson Prentice Hall

Independent Assortment The alleles for round (R) and yellow (Y) are dominant over the alleles for wrinkled (r) and green (y). When Mendel crossed plants that were heterozygous dominant for round yellow peas, he found that the alleles segregated independently to produce the F2 generation. Copyright Pearson Prentice Hall

Independent Assortment The Two-Factor Cross: F2  Mendel crossed the heterozygous F1 plants (RrYy) with each other to determine if the alleles would segregate from each other in the F2 generation. RrYy × RrYy Copyright Pearson Prentice Hall

Independent Assortment The Punnett square always predicts a 9 : 3 : 3 :1 ratio in the F2 generation. When Mendel crossed plants that were heterozygous dominant for round yellow peas, he found that the alleles segregated independently to produce the F2 generation. Copyright Pearson Prentice Hall

Independent Assortment In Mendel’s experiment, the F2 generation produced the following: some seeds that were round and yellow some seeds that were wrinkled and green some seeds that were round and green some seeds that were wrinkled and yellow Copyright Pearson Prentice Hall

Independent Assortment The alleles for seed shape segregated independently of those for seed color. This principle is known as independent assortment (two factor crosses). Genes that segregate independently do not influence each other's inheritance. Copyright Pearson Prentice Hall

A Summary of Mendel's Principles Genes are passed from parents to their offspring. If two or more forms (alleles) of the gene for a single trait exist, some forms of the gene may be dominant and others may be recessive. Copyright Pearson Prentice Hall

A Summary of Mendel's Principles In most sexually reproducing organisms, each adult has two copies of each gene. These genes are segregated from each other when gametes are formed. The alleles for different genes usually segregate independently of one another. Copyright Pearson Prentice Hall

Beyond Dominant and Recessive Alleles Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles or multiple genes. Copyright Pearson Prentice Hall

Beyond Dominant and Recessive Alleles Incomplete Dominance  When one allele is not completely dominant over another it is called incomplete dominance. In incomplete dominance, the heterozygous phenotype is between the two homozygous phenotypes. Copyright Pearson Prentice Hall

Beyond Dominant and Recessive Alleles RR A cross between red (RR) and white (WW) four o’clock plants produces pink-colored flowers (RW). WW Some alleles are neither dominant nor recessive. In four o’clock plants, for example, the alleles for red and white flowers show incomplete dominance. Heterozygous (RW) plants have pink flowers—a mix of red and white coloring. Copyright Pearson Prentice Hall

Beyond Dominant and Recessive Alleles Codominance  In codominance, both alleles contribute to the phenotype. AB blood type is codominant In certain varieties of chicken, the allele for black feathers is codominant with the allele for white feathers. Heterozygous chickens are speckled with both black and white feathers. The black and white colors do not blend to form a new color, but appear separately. Copyright Pearson Prentice Hall

Beyond Dominant and Recessive Alleles Multiple Alleles  Genes that are controlled by more than two alleles are said to have multiple alleles. Copyright Pearson Prentice Hall

Beyond Dominant and Recessive Alleles Different combinations of alleles result in the colors shown here. KEY C = full color; dominant to all other alleles cch = chinchilla; partial defect in pigmentation; dominant to ch and c alleles ch = Himalayan; color in certain parts of the body; dominant to c allele c = albino; no color; recessive to all other alleles Coat color in rabbits is determined by a single gene that has at least four different alleles. Different combinations of alleles result in the four colors you see here. photo credits: 1. ©John Gerlach/Visuals Unlimited 2.Animals Animals/©Richard Kolar 3. ©Jane Burton/Bruce Coleman, Inc. 4. ©Hans Reinhard/Bruce Coleman, Inc. AIbino: cc Chinchilla: cchch, cchcch, or cchc Himalayan: chc, or chch Full color: CC, Ccch, Cch, or Cc Copyright Pearson Prentice Hall

Beyond Dominant and Recessive Alleles Polygenic Traits   Traits controlled by two or more genes are said to be polygenic traits. Skin color in humans is a polygenic trait controlled by more than four different genes. Copyright Pearson Prentice Hall