2003-03-21PalSpec Status Review1 PalSpec Status Review WITH NOTES RE KECK APPLICATION Terry Herter, Chuck Henderson (Cornell) John Wilson, Mike Skrutskie.

Slides:



Advertisements
Similar presentations
Multi-long-slit Spectroscopy for Kinematic Studies. I. Implementation and Demonstration Rene A. M. Walterbos, Jiehae Choi, Sophia Cisneros, Maria T. Patterson,
Advertisements

HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
GLAO instrument specifications and sensitivities
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
Oct. 18, Review: Telescopes – their primary purpose… Across the full EM spectrum (radio through very high energy gamma- rays) telescopes fundamentally.
Prospects – JWST, EUCLID, WFIRST Jeff Kruk (GSFC)
Spectroscopic Reference Design Options D. L. DePoy Texas A&M University.
UVES The Ultraviolet & Visible Echelle Spectrograph John Pritchard ESO p2pp3 Workshop: UVES Overview | | John Pritchard.
1 PHYSICS Progress on characterization of a dualband IR imaging spectrometer Brian Beecken, Cory Lindh, and Randall Johnson Physics Department, Bethel.
Instrumentation Concepts Ground-based Optical Telescopes
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
Direction-detection spectrometer concepts the CCAT Matt Bradford + others 24 October 2006, in progress.
CCAT Performance Terry Herter (Cornell University) 10 Oct 05 From Princeton Mtg.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
Observational Astrophysics II: May-June, Observational Astrophysics II (L2)
Observational Astrophysics II: May-June, Observational Astrophysics II (L2) Getting our NIRF What do want to do? 1.Image a selected.
7/2/2015Richter - UC Davis1 EXES, the echelon-cross-echelle spectrograph for SOFIA Matthew J. Richter (UC Davis) with Mark McKelvey (NASA Ames Research.
Spectral Range and Resolution Huan Lin Fermilab. 2 Wavelengths5500 Å6000 Å10000 Å Emission line redshifts [OII] [OIII]
Astronomical Spectroscopy
KMOS Instrument Science Team Review Instrument overview.
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
Naoyuki Tamura (University of Durham) Expected Performance of FMOS ~ Estimation with Spectrum Simulator ~ Introduction of simulators  Examples of calculations.
Dae-Sik Moon Department of Astronomy & Astrophysics University of Toronto Wide Field, High Resolution Integral-Field Near-Infrared Spectroscopy of Extended.
JWST calibration requirements Harald Kuntschner. JWST - an overview NIRCam –0.6-5 microns –FoV: 2.16x4.4 arcmin (0.0317” for short band and ” for.
MOIRCS and FMOS for cluster studies Ichi Tanaka Astronomical Institute, Tohoku University MOIRCS and FMOS for cluster studies.
FMOS Overview Oxford, 22nd June FMOS: Fibre Multi-Object Spectrograph Logical successor to 2dF Logical successor to 2dF Wide-Field IR spectroscopy.
The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer for JWST Martyn Wells MIRI EC & UKATC.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
MIRHES (Mid-IR high-resolution echelle spectrometer) MIRHES team.
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
Near Infrared Spectro-polarimeter (NIRSP) Conceptual Design Don Mickey Jeff Kuhn Haosheng Lin.
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
An IFU for IFOSC on IUCAA 2m Telescope
JGR 19 Apr Basics of Spectroscopy Gordon Robertson (University of Sydney)
ST–ECF UC, Dec 01 1 NGST support at the ST-ECF Bob Fosbury
MIRI Optical System CDR, 6 th & 7 th December 2006 Mid InfraRed Instrument 07-1 Optical System Critical Design Review (CDR) TIPS Presentation: Margaret.
Subaru/FMOS Commissioning: Brief history & current status Naoyuki Tamura Instrument scientist Subaru Telescope, NAOJ Expected performance Observation “A.
The Prime Focus Imaging Spectrograph Design and Capabilities
Universities Space Research Association Page 1 Communications Integrated Systems FLITECAM – Compelling Science Ian McLean UCLA.
Current Status of SPICA FPI Mechanical I/F & resources April 6 th 2010 Hideo Matsuhara (ISAS/JAXA) & FPI team.
Kailash C. Sahu NIRCam: Status Update 1m Cold, space-facing side
Binospec - Next Generation Optical Spectrograph for the MMT
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Space Part 06, Beijing, China, April 21, Lobster-Eye (LE) Novel Wide Field X-ray Telescopes FOV of 100 sq. deg. and more easily possible (classical.
1 Comparative Performance of a 30m Groundbased GSMT and a 6.5m (and 4m) NGST NAS Committee of Astronomy & Astrophysics 9 th April 2001 Matt Mountain Gemini.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Astronomical Observational Techniques and Instrumentation
Goals for HETDEX Determine equation of state of Universe and evolutionary history for dark energy from 0
020625_ExtReview_Nexus.1 NEXUS / SDO / ILWS SDO Science goals: How does solar variability directly affect life on Earth? SDO areas of interest: –Solar.
Emission Line Surveys Lecture 1 Mauro Giavalisco Space Telescope Science Institute University of Massachusetts, Amherst 1 1 From January 2007.
MMIRS Status A.Szentgyorgyi/SAO 30 April Imaging 7 x 7 arcmin FOV 0.2 arcsec pixels Y,J,H & K wavelength coverage Spectroscopy Multislit (4’ x 7’)
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
Performance and sensitivity of Low Resolution Spectrographs for LAMOST Zhu Yongtian, Hou Yonghui, Hu Zhongwen Wang Lei, Wang Jianing.
The Prime Focus Imaging Spectrograph for the Southern African Large Telescope: Operational Modes Chip Kobulnicky – Instrument Scientist, University of.
NIRSpec - the JWST Multi-Object Spectrograph P. Ferruit (ESA), S. Arribas (CSIS), S. Birkmann (ESA), T. Böker (ESA), A. Bunker (Oxford), S. Charlot (IAP),
3 rd March 2006EUS Consortium meeting EUS Instrument Overview Eric Sawyer RAL.
NIRSpec - the JWST Multi-Object Spectrograph P. Jakobsen (ESA), S. Arribas (CSIS), T. Beck (STScI), S. Birkmann (ESA), T. Böker (ESA), A. Bunker (Oxford),
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
Astronomical Spectroscopic Techniques
Key Inputs / Requirements
Spectral Line Measurement
An IFU slicer spectrometer for SNAP
Astronomy 920 Commissioning of the Prime Focus Imaging Spectrograph
Comparative Performance of a 30m Groundbased GSMT and a 6
Astronomical Observational Techniques and Instrumentation
How we do Spectroscopy An Overview
Astronomy 920 Commissioning of the Prime Focus Imaging Spectrograph
Presentation transcript:

PalSpec Status Review1 PalSpec Status Review WITH NOTES RE KECK APPLICATION Terry Herter, Chuck Henderson (Cornell) John Wilson, Mike Skrutskie (Univ. or Virginia) Keith Matthews (Caltech), Jim Howard (Telic) March 21, 2003

PalSpec Status Review2 Spectrograph Requirements Original Baseline –Simultaneous coverage from 0.80 – 2.5  m Emphasis on J, H, and K bands –R ~ 2500 with 30 x 0.9 arcsec slit –For keck R~2500 with slit ~ 15 x 0.45 arcsec –Slit viewer with > 2x2 arcmin 2 FoV –Keck slit viewer ~ 40”x40” Delivery –December 2003 –For Keck, delivery TBD

PalSpec Status Review3 WHY DOES IT WORK ON KECK Instrument is being designed to study faint, small (<~1”) objects, one at a time f number: at palomar 16, keck 16.6 Seeing at keck ~1/2 that at Palomar –=>palomar instrument will work at keck with fov reduced by factor of 2

PalSpec Status Review4 OH Line Positions Positions of atmosphere airglow (OH) lines vs. wavelength overlaid with atmospheric transmission.

PalSpec Status Review5 Perspective Views Collimator Reimager Grating Slit viewer Focal Plane

PalSpec Status Review6 Perspective Views

PalSpec Status Review7 View with Shell

PalSpec Status Review8 6 inches CaF2/CaF2 Infrasil/ZnS/ZnSe ZnSe/ZnSe Asphere Array tilted 1.3 deg Prototype Camera by Jim Howard, Telic Optics Prototype Spectrograph Camera

PalSpec Status Review9 Top/Bottom of 30 arcsec slit Camera Spot Diagrams

PalSpec Status Review10 2 pix radius = 18 micron If 2.78 pix/arcsec (slit width Palomar = 72 Keck = 36 arcsec Encircled Energy

PalSpec Status Review11 Spectrum Layout in Focal Plane Possible array rotation (also rotate slit to keep on columns)

PalSpec Status Review12 Spectral Resolution Spectral resolution for 1.0 arcsec slit with 2.78 pixels/arcsecond.

PalSpec Status Review13 Grating Efficiency

PalSpec Status Review14 * includes primary through detector System Throughput Atmospheric transmission Off the array

PalSpec Status Review15 Slit Viewer Design Specs –Operates at Ks –Images to ~ 0.14 arcsec/pix –Giving 2.4 arcmin FoV => 5.7 sq. arcmin Integration Time (sec) Ks mag (S/N = 5) Number of Galaxies Number of Stars

PalSpec Status Review16 KECK SLIT VIEWER WE’LL USE 256X256 ARRAY FROM EXISTING IR INSTRUMENT FOV EQUIVALENT TO NIRC FOV (40”)

PalSpec Status Review17 Slit Viewer Detection Rate Slit viewer with 2.4 arcmin FoV Counts from Glazebrook et al. 1994, MNRAS, 266, sec 10 sec 30 sec

PalSpec Status Review18 Spectrograph Line Sensitivity Assumptions –S/N = 5, 10 pixels to extract line –System throughput = 0.15 in all bands –Between OH-lines (J,H,K bkgnd = 70, 200, 70  Jy/arcsec 2 ) –RN = 5 e-, i(dark) = 0.01 e-/sec KECK SHOULD BE 4x BETTER Flux ( ergs/cm 2 /s)t back Band600 sec1800 sec3600 sec(sec) J H K t back = integration time for RN to contribute < 20% to noise.

PalSpec Status Review19 Spectrograph Continuum Sensitivity Assumptions –S/N = 5 per resolution element –System throughput = 0.15 in all bands –Between OH-lines (J,H,K bkgnd = 70, 200, 70  Jy/arcsec 2 ) –RN = 5 e-, i(dark) = 0.01 e-/sec KECK WILL BE 1.5 MAG DEEPER FOR POINT SOURCES Mag in 1 resolution element Band600 sec1800 sec3600 sec J H K

PalSpec Status Review20

PalSpec Status Review21