DM in the Galaxy James Binney Oxford University TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.

Slides:



Advertisements
Similar presentations
Astronomical Solutions to Galactic Dark Matter Will Sutherland Institute of Astronomy, Cambridge.
Advertisements

LECTURE 21, NOVEMBER 16, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
THE CASE FOR MODIFIED GRAVITY James Binney Oxford University.
Chemical Cartography with SDSS/APOGEE Michael Hayden (NMSU), Jo Bovy (IAS), Steve Majewski (UVa), Jennifer Johnson (OSU), Gail Zasowski (JHU), Leo Girardi.
P.Tisserand Rencontres du Vietnam Final results on galactic dark matter from the EROS-2 microlensing survey ~ images processed - 55 million.
Dark Matter in Dwarf Galaxies
DARK MATTER IN GALAXIES
Galaxy Formation and Evolution Open Problems Alessandro Spagna Osservatorio Astronomico di Torino Torino, 18 Febbraio 2002.
The Distribution of DM in Galaxies Paolo Salucci (SISSA) TeVPa Paris,2010.
TeV Particle Astrophysics, Venice, August 29, 2007J. Siegal-Gaskins1 Signatures of ΛCDM substructure in tidal debris Jennifer Siegal-Gaskins in collaboration.
Dwarf Galaxies and Their Destruction... Marla Geha Carnegie Observatories (OCIW) Collaborators: P. Guhathakurta (UCSC), R. van der Marel (STScI)
Galactic archaeology Rodrigo Ibata Observatoire de Strasbourg.
Particle Astrophysics & Cosmology SS Chapter 7 Dark Matter.
Breaking tidal stream degeneracies with LAMOST Jorge Peñarrubia (IoA) Cambridge 2nd December 08.
15 The Milky Way More than just a candy bar.. 15.
Merger Histories of LCDM Galaxies: Disk Survivability and the Deposition of Cold Gas via Mergers Kyle Stewart AAS Dissertation Talk 213 th AAS Meeting.
Mass to light ratio of the Milky Way disc Chris Flynn, Johan Holmberg, Laura Portinari Tuorla Observatory Burkhard Fuchs, Hartmut Jahrei ß Burkhard Fuchs,
The Milky Way Galaxy James Binney Oxford University.
Constraining Galactic Halos with the SZ-effect
A Galactic halo road map The halo stars : where, whither, whence? Chris Thom, Jyrki Hänninen, Johan Holmberg, Chris Flynn Tuorla Observatory Swinburne.
The Milky Way Center, Shape Globular cluster system
The Milky Way Galaxy. The Milky Way We see a band of faint light running around the entire sky. Galileo discovered it was composed of many stars. With.
Levels of organization: Stellar Systems Stellar Clusters Galaxies Galaxy Clusters Galaxy Superclusters The Universe Everyone should know where they live:
The Milky Way and Other Galaxies Science A-36 12/4/2007.
A.Kravtsov (U.Chicago) D. Ceverino (NMSU) O. Valenzuela (U.Washington) G. Rhee (UNLV) F. Governato, T.Quinn, G.Stinson (U.Washington) J.Wadsley (McMaster,
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The Baryon Induced Transformation of CDM Halos Mario G. Abadi Universidad Nacional de Córdoba, CONICET Argentina In collaboration with Julio Navarro and.
1 Galactic Science and MOS on the WHT Amina Helmi.
Galaxy Characteristics Surface Brightness Alternative to Luminosity I(R) = Flux/area = erg/s/cm 2 /arcsec 2 I(0) – center flux I(R) = at radius R Define.
The Dual Origin of a Simulated Milky Way Halo Adi Zolotov (N.Y.U.), Beth Willman (Haverford), Fabio Governato, Chris Brook (University of Washington, Seattle),
Gaia – Revue des Exigences préliminaires 1 Testing dark matter with Gaia O. Bienaymé O. Bienaymé Strasbourg Observatory.
8th Sino-German Workshop Kunming, Feb 23-28, 2009 Milky Way vs. M31: a Tale of Two Disks Jinliang HOU In collaboration with : Ruixiang CHANG, Shiyin SHEN,
Galaxy Mass Star Number/Density Counting stars in a given volume
El universo: Edad: 13.7 millardos de años (1 % de error) Expansión: 71 km/sec/Mpc actualmente (5 % de error) 73% = Energía oscura 23% = materia oscura.
The Microlensing Event Rate and Optical Depth Toward the Galactic Bulge from MOA-II Takahiro Sumi (Osaka University)
GalaxiesGalaxies Learning Outcome (Student will…): compare characteristics & classification of various galaxies.
The Dark Side of the Universe Sukanya Chakrabarti (FAU)
Diaspora in Cercetarea Stiintifica Bucuresti, Sept The Milky Way and its Satellite System in 3D Velocity Space: Its Place in the Current Cosmological.
Barred Galaxies Chang, Seo-Won. Contents 1.Overview 2.Vertical structure of bars 3.Rings in SB galaxies 4.Dust lanes in SB galaxies 5.Lop-sidedness in.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 23.
次世代位置天文衛星による 銀河系ポテンシャル測定 T. Sumi (Nagoya STE) T. Sumi (Nagoya STE) K.V. Johnston (Columbia) K.V. Johnston (Columbia) S. Tremaine (IAS) S. Tremaine (IAS)
Dynamic and Spatial Properties of Satellites in Isolated Galactic Systems Abel B. Diaz.
Astronomy 404/CSI 769 Extragalactic Astronomy
Masers as Probes of Galactic Structure
The Milky Way Galaxy. Sky Maps in Different Bands.
UNIT 1 The Milky Way Galaxy.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
Milky Way thin disk. Q: in order to study the spatial distribution of the thin disk (which dominates the Milky Way luminosity) surface photometry in the.
Title Galaxy Structure and Dark Matter Michael Merrifield University of Nottingham.
Copyright © 2010 Pearson Education, Inc. Chapter 14 The Milky Way Galaxy Lecture Outline.
Cosmology and Dark Matter IV: Problems with our current picture Jerry Sellwood.
Investigating dark matter halos of galaxies from the COMBO-17 survey Martina Kleinheinrich (Max-Planck-Institut für Astronomie, Heidelberg) & Hans-Walter.
Xiangxiang Xue Hans-Walter Rix, G. Zhao, P. Re Fiorentin, T. Naab, M. Steinmetz, E. F. Bell, F. C. van den Bosch, T. C. Beers, R. Wilhelm, Y. S. Lee, C.
Dark matter Phase Transition constrained at Ec = O(0.1) eV by LSB rotation curve Jorge Hiram Mastache de los Santos Dr. Axel de la Macorra Pettersson UNIVERSIDAD.
Galaxies: Our Galaxy: the Milky Way. . The Structure of the Milky Way Galactic Plane Galactic Center The actual structure of our Milky Way is very hard.
Universe Tenth Edition
Milky Way: Galactic Structure and Dynamics Milky Way has spiral structure Galactic Bulge surrounds the Center Powerful radio source Sagittarius A at Center.
Dark Matter in the Milky Way - how to find it using Gaia and other surveys Paul McMillan Surveys For All, 1st February 2016.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
Limits on the stellar mass content of galaxies from bar and spiral structure dynamics K.C. Freeman Research School of Astronomy & Astrophysics The Australian.
DM in the Galaxy James Binney Oxford University TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA.
Chapter 23; the Milky Way galaxy Milky Way anatomy Orbits, spiral arms, and galactic rotation/ Variable stars as a tool Cool phenomena at the core.
ASTR112 The Galaxy Lecture 5 Prof. John Hearnshaw 8. Galactic rotation 8.3 Rotation from HI and CO clouds 8.4 Best rotation curve from combined data 9.
The prolate shape of the Galactic halo Amina Helmi Kapteyn Astronomical Institute.
THE CASE FOR MODIFIED GRAVITY James Binney Oxford University.
© 2017 Pearson Education, Inc.
© 2017 Pearson Education, Inc.
This is NOT the Milky Way galaxy! It’s a similar one: NGC 4414.
Dark Matter on Galactic Scales (and the Lack Thereof)
Presentation transcript:

DM in the Galaxy James Binney Oxford University TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A

½ DM = ½ - ½ B Constraints on ½ The disk, inner & outer The disk, inner & outer The bar/bulge The bar/bulge Which dark halo? Which dark halo? Microlensing data Microlensing data Conclusions Conclusions

The disk Rotation curve Rotation curve At R<R 0 tangent v ! v c (modulo R 0, £ 0 and effects of bar & spiral arms) At R<R 0 tangent v ! v c (modulo R 0, £ 0 and effects of bar & spiral arms) From ¹ of Sgr A*, £ 0 =240 § 1(R 0 /8kpc) (Reid & Brunthaler 04) From ¹ of Sgr A*, £ 0 =240 § 1(R 0 /8kpc) (Reid & Brunthaler 04) Take R 0 =7.6 (Eisenhauer+05) ) £ 0 =229 km/s Take R 0 =7.6 (Eisenhauer+05) ) £ 0 =229 km/s

Outer disk For R>R 0, with only b=0 need distances to tracers For R>R 0, with only b=0 need distances to tracers Distance errors can suggest rising v c Distance errors can suggest rising v c Merrifield (92): if z(R), using extent in b at fixed W=v los /sin l can get v c (R) and z 1/2 (R) Merrifield (92): if z(R), using extent in b at fixed W=v los /sin l can get v c (R) and z 1/2 (R) Revisited by Olling & Merrifield (98-01) Revisited by Olling & Merrifield (98-01) Kalberla+ (07) apply to new data (LAB) ! Kalberla+ (07) apply to new data (LAB) ! v c gently rising to 20kpc v c gently rising to 20kpc evidence for a ring 13<R<18.5 kpc, M ' 2.5 £ M ¯ evidence for a ring 13<R<18.5 kpc, M ' 2.5 £ M ¯ Problems: (i) warp, (ii) can’t determine f(v z ) away from Sun Problems: (i) warp, (ii) can’t determine f(v z ) away from Sun Binney & Dehnen (97)

Local disk density Near Sun v rand ! Near Sun v rand ! ½ (R 0,0) = 0.1 § 0.01 M ¯ pc -3 (Holmberg & Flynn 00; Creze et al 98) ½ (R 0,0) = 0.1 § 0.01 M ¯ pc -3 (Holmberg & Flynn 00; Creze et al 98) Counting stars and gas (Flynn+ 06) ) § d ' 49 M ¯ pc -2,   = 1.2 § 0.2 M ¯ /L ¯ (no DM) Counting stars and gas (Flynn+ 06) ) § d ' 49 M ¯ pc -2,   = 1.2 § 0.2 M ¯ /L ¯ (no DM) Stellar motions at Galactic poles ! § (R 0,1.1kpc) = 71 § 6 M ¯ pc -2 (Kuijken & Gilmore 91; Holmberg & Flynn 04) Stellar motions at Galactic poles ! § (R 0,1.1kpc) = 71 § 6 M ¯ pc -2 (Kuijken & Gilmore 91; Holmberg & Flynn 04) Difference attributable to dark halo Difference attributable to dark halo

Photometry of disk Use NIR to (a) beat dust absorption, (b) be sensitive to mass-bearing stars Use NIR to (a) beat dust absorption, (b) be sensitive to mass-bearing stars COBE/DIRBE data provide unique overview – but 0.7 o resolution COBE/DIRBE data provide unique overview – but 0.7 o resolution 2MASS star counts allow more detailed work (Robin+03) 2MASS star counts allow more detailed work (Robin+03) Data consistent § (R) / exp(-R/R d ) Data consistent § (R) / exp(-R/R d ) R d ' 2.5 kpc R d ' 2.5 kpc Using § (R 0 )=49M ¯ pc -2 get M d = 4 £ M ¯ ! £ 0 =156 km/s (only 1/2 measured acceleration & falling) Using § (R 0 )=49M ¯ pc -2 get M d = 4 £ M ¯ ! £ 0 =156 km/s (only 1/2 measured acceleration & falling)

The bulge For contribution to £ 2 use GM/R 0 = (92.5 km/s) 2 For contribution to £ 2 use GM/R 0 = (92.5 km/s) 2 M = 1.4 § 0.6 £ M ¯ (Launhardt et al 01) M = 1.4 § 0.6 £ M ¯ (Launhardt et al 01) ! £ 0 = 181 km/s ! £ 0 = 181 km/s The dark halo has to provide The dark halo has to provide V c =( ) 1/2 =140 km/s V c =( ) 1/2 =140 km/s

Which dark halo? Dark halos ~ 1 param family (NFW to Neto+07) Dark halos ~ 1 param family (NFW to Neto+07) ½ (r)= ½ 0 /[(r/a)(1+r/a) 2 ] ½ (r)= ½ 0 /[(r/a)(1+r/a) 2 ] ½ (r 200 )=200 ½ c ½ (r 200 )=200 ½ c c=r 200 /a c=r 200 /a Log(c) ' log(M 200 ) § 0.1 (Neto+07) Log(c) ' log(M 200 ) § 0.1 (Neto+07) Then observables fns(M 200 ) Then observables fns(M 200 ) From v c need From v c need M 200 = 2.5 £ M ¯ a=36.1 kpc M 200 = 2.5 £ M ¯ a=36.1 kpc V c (max)=228 km/s ½ DM (R 0 )=1.1 £ 10 7 M ¯ kpc -3 V c (max)=228 km/s ½ DM (R 0 )=1.1 £ 10 7 M ¯ kpc -3 So DM contributes 2.2 £ 1.1 =24.2 M ¯ pc -2 to § (1.1kpc) (cf 22 § 6 from v rand ) So DM contributes 2.2 £ 1.1 =24.2 M ¯ pc -2 to § (1.1kpc) (cf 22 § 6 from v rand )

Density at large r Random Vs of satellites Random Vs of satellites Proper motions essential: v los ! v r, v t ! r ¹ Proper motions essential: v los ! v r, v t ! r ¹ Need also d º /dr for population Need also d º /dr for population Wilkinson & Evans (99): M(50kpc)=(5.2 to 1.9) £ M ¯ Wilkinson & Evans (99): M(50kpc)=(5.2 to 1.9) £ M ¯ Battaglia+(05): ¾ los falls 100 to 50 km/s at r>50 kpc; suggest low end Battaglia+(05): ¾ los falls 100 to 50 km/s at r>50 kpc; suggest low end NFW gives M(50kpc) = 5.7 £ M ¯ NFW gives M(50kpc) = 5.7 £ M ¯

Shape of dark halo? Without baryons, halos generically triaxial Without baryons, halos generically triaxial Baryons drive towards axisymmetry Baryons drive towards axisymmetry Uncertain predictions Uncertain predictions Should be able to probe with tidal streams Should be able to probe with tidal streams Conflicting results to date Conflicting results to date SDSS should transform the situation SDSS should transform the situation

Microlensing Measures mass in stars only Measures mass in stars only ¿ = P(lensed) ~ towards GC and ~10 -7 outwards ¿ = P(lensed) ~ towards GC and ~10 -7 outwards So need rich target starfields – bulge and Magellanic clouds So need rich target starfields – bulge and Magellanic clouds Major problems: “blending” & intrinsic stellar variability Major problems: “blending” & intrinsic stellar variability

LMC lensing –Given blending, best interpreted as upper limits –<20% of ¿ expected if DM stellar; excludes masses down to M ¯ – ¿ LMC =1 £ (Alcock+00, Bennett 05); 1.5 £ (EROS: Jetzer 04) – ¿ possibly compatible with known stars (Evans & Belokurov)

Bulge microlensing Consider only lensing of clump giants (V<18) Consider only lensing of clump giants (V<18) Basel model (based on IR photometry, kinematics & dynamics of gas and stars) Basel model (based on IR photometry, kinematics & dynamics of gas and stars) Strongly non-axisymmetric © required; hard to generate non-circular motions of required magnitude Strongly non-axisymmetric © required; hard to generate non-circular motions of required magnitude So model has no DM ! ¿ -map and durations So model has no DM ! ¿ -map and durations Durations consistent with reasonable stellar mass function Durations consistent with reasonable stellar mass function If NFW added, must reduce predicted ¿ If NFW added, must reduce predicted ¿ Very tight budget, zero room for obs ¿ to be over- estimated Very tight budget, zero room for obs ¿ to be over- estimated

Fine structure ~20% of mass in substructures ~20% of mass in substructures Low prob of our being in one Low prob of our being in one Key question: depth of troughs in “smooth” background Key question: depth of troughs in “smooth” background Way beyond resolution of existing N- bodies Way beyond resolution of existing N- bodies

Conclusions Rotation curve of MW well determined inside R 0 Rotation curve of MW well determined inside R 0 At R À R 0 situation confused At R À R 0 situation confused At R<R 0 MW baryon-dominated At R<R 0 MW baryon-dominated Near Sun data consistent with expected DM halo Near Sun data consistent with expected DM halo At R ¿ R 0 non-circular motions constrain contribution of axisymmetric component; microlensing ¿ only slightly overpredicted when all matter stellar, but probably room for cosmologically favoured dark halo At R ¿ R 0 non-circular motions constrain contribution of axisymmetric component; microlensing ¿ only slightly overpredicted when all matter stellar, but probably room for cosmologically favoured dark halo