Chapter 4 (part 2): Non-Parametric Classification

Slides:



Advertisements
Similar presentations
Principles of Density Estimation
Advertisements

Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Data Mining Classification: Alternative Techniques
0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Lecture 3 Nonparametric density estimation and classification
Chapter 2: Bayesian Decision Theory (Part 2) Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density.
Pattern Classification, Chapter 2 (Part 2) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R.
Pattern Classification, Chapter 2 (Part 2) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R.
Pattern recognition Professor Aly A. Farag
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 1: Introduction to Pattern Recognition
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 5: Linear Discriminant Functions
Chapter 4 (Part 1): Non-Parametric Classification
0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 2: Bayesian Decision Theory (Part 1) Introduction Bayesian Decision Theory–Continuous Features All materials used in this course were taken from.
Pattern Classification, Chapter 3 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 2 (part 3) Bayesian Decision Theory Discriminant Functions for the Normal Density Bayes Decision Theory – Discrete Features All materials used.
Chapter 6: Multilayer Neural Networks
Chapter 3 (part 3): Maximum-Likelihood and Bayesian Parameter Estimation Hidden Markov Model: Extension of Markov Chains All materials used in this course.
KNN, LVQ, SOM. Instance Based Learning K-Nearest Neighbor Algorithm (LVQ) Learning Vector Quantization (SOM) Self Organizing Maps.
Pattern Recognition. Introduction. Definitions.. Recognition process. Recognition process relates input signal to the stored concepts about the object.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Bayesian Estimation (BE) Bayesian Parameter Estimation: Gaussian Case
Chapter 3 (part 1): Maximum-Likelihood & Bayesian Parameter Estimation  Introduction  Maximum-Likelihood Estimation  Example of a Specific Case  The.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
COMMON EVALUATION FINAL PROJECT Vira Oleksyuk ECE 8110: Introduction to machine Learning and Pattern Recognition.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 21 Oct 28, 2005 Nanjing University of Science & Technology.
An Introduction to Support Vector Machine (SVM) Presenter : Ahey Date : 2007/07/20 The slides are based on lecture notes of Prof. 林智仁 and Daniel Yeung.
Nearest Neighbor (NN) Rule & k-Nearest Neighbor (k-NN) Rule Non-parametric : Can be used with arbitrary distributions, No need to assume that the form.
Non-Parameter Estimation 主講人:虞台文. Contents Introduction Parzen Windows k n -Nearest-Neighbor Estimation Classification Techiques – The Nearest-Neighbor.
Ch 4. Linear Models for Classification (1/2) Pattern Recognition and Machine Learning, C. M. Bishop, Summarized and revised by Hee-Woong Lim.
1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 24 Nov 2, 2005 Nanjing University of Science & Technology.
Image Modeling & Segmentation Aly Farag and Asem Ali Lecture #2.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
METU Informatics Institute Min720 Pattern Classification with Bio-Medical Applications Part 6: Nearest and k-nearest Neighbor Classification.
Classification (slides adapted from Rob Schapire) Eran Segal Weizmann Institute.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 20 Classification and Estimation Classification – Feature selection Good feature have four characteristics: –Discrimination. Features.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Fuzzy Pattern Recognition. Overview of Pattern Recognition Pattern Recognition Procedure Feature Extraction Feature Reduction Classification (supervised)
Debrup Chakraborty Non Parametric Methods Pattern Recognition and Machine Learning.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides* were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification Chapter 2(Part 3) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O.
Nonparametric Density Estimation – k-nearest neighbor (kNN) 02/20/17
Non-Parameter Estimation
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
School of Computer Science & Engineering
3(+1) classifiers from the Bayesian world
Outline Parameter estimation – continued Non-parametric methods.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
LECTURE 16: NONPARAMETRIC TECHNIQUES
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Nonparametric density estimation and classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
ECE – Pattern Recognition Lecture 10 – Nonparametric Density Estimation – k-nearest-neighbor (kNN) Hairong Qi, Gonzalez Family Professor Electrical.
Pattern Recognition: Statistical and Neural
Presentation transcript:

Chapter 4 (part 2): Non-Parametric Classification Parzen Window (cont.) Kn –Nearest Neighbor Estimation The Nearest-Neighbor Rule All materials used in this course were taken from the textbook “Pattern Classification” by Duda et al., John Wiley & Sons, 2001 with the permission of the authors and the publisher

Parzen Window (cont.) Parzen Window – Probabilistic Neural Network Compute a Parzen estimate based on n patterns Patterns with d features sampled from c classes The input unit is connected to n patterns . . . . . W11 x1 x2 xd . p1 x2 p2 . Input unit Input patterns . . Wd2 Wdn pn Modifiable weights (trained) Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 3

(Emission of nonlinear functions) . . pn . p1 . p2 Input patterns . 1 . 2 . Category units pk . . . c pn Activations (Emission of nonlinear functions) Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 3

Training the network Algorithm Normalize each pattern x of the training set to 1 Place the first training pattern on the input units Set the weights linking the input units and the first pattern units such that: w1 = x1 Make a single connection from the first pattern unit to the category unit corresponding to the known class of that pattern Repeat the process for all remaining training patterns by setting the weights such that wk = xk (k = 1, 2, …, n) We finally obtain the following network Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 3

Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 3

Testing the network Algorithm Normalize the test pattern x and place it at the input units Each pattern unit computes the inner product in order to yield the net activation and emit a nonlinear function 3. Each output unit sums the contributions from all pattern units connected to it 4. Classify by selecting the maximum value of Pn(x | j) (j = 1, …, c) Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 3

Kn - Nearest neighbor estimation Goal: a solution for the problem of the unknown “best” window function Let the cell volume be a function of the training data Center a cell about x and let it grows until it captures kn samples (kn = f(n)) kn are called the kn nearest-neighbors of x 2 possibilities can occur: Density is high near x; therefore the cell will be small which provides a good resolution Density is low; therefore the cell will grow large and stop until higher density regions are reached We can obtain a family of estimates by setting kn=k1/n and choosing different values for k1 Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 4

Illustration For kn = n = 1 ; the estimate becomes: Pn(x) = kn / n.Vn = 1 / V1 =1 / 2|x-x1| Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 4

Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 4

Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 4

Estimation of a-posteriori probabilities Goal: estimate P(i | x) from a set of n labeled samples Let’s place a cell of volume V around x and capture k samples ki samples amongst k turned out to be labeled i then: pn(x, i) = ki /n.V An estimate for pn(i| x) is: Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 4

ki/k is the fraction of the samples within the cell that are labeled i For minimum error rate, the most frequently represented category within the cell is selected If k is large and the cell sufficiently small, the performance will approach the best possible Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 4

The nearest –neighbor rule Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes Let x’  Dn be the closest prototype to a test point x then the nearest-neighbor rule for classifying x is to assign it the label associated with x’ The nearest-neighbor rule leads to an error rate greater than the minimum possible: the Bayes rate If the number of prototype is large (unlimited), the error rate of the nearest-neighbor classifier is never worse than twice the Bayes rate (it can be demonstrated!) If n  , it is always possible to find x’ sufficiently close so that: P(i | x’)  P(i | x) Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 5

A-posteriori probabilities estimated Example: x = (0.68, 0.60)t Decision: 5 is the label assigned to x Prototypes Labels A-posteriori probabilities estimated (0.50, 0.30) (0.70, 0.65) 2 3 5 6 0.25 0.75 = P(m | x) 0.70 0.30 Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 5

If P(m | x)  1, then the nearest neighbor selection is almost always the same as the Bayes selection Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 5

Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 5

The k – nearest-neighbor rule Goal: Classify x by assigning it the label most frequently represented among the k nearest samples and use a voting scheme Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 5

Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 5

Example: Prototypes Labels (0.15, 0.35) (0.10, 0.28) (0.09, 0.30) k = 3 (odd value) and x = (0.10, 0.25)t Closest vectors to x with their labels are: {(0.10, 0.28, 2); (0.12, 0.20, 2); (0.15, 0.35,1)} One voting scheme assigns the label 2 to x since 2 is the most frequently represented Prototypes Labels (0.15, 0.35) (0.10, 0.28) (0.09, 0.30) (0.12, 0.20) 1 2 5 Dr. Djamel Bouchaffra CSE 616 Applied Pattern Recognition, Ch4 , Section 4. 5