11/14  Continuation of Time & Change in Probabilistic Reasoning Project 4 progress? Grade Anxiety? Make-up Class  On Monday?  On Wednesday?

Slides:



Advertisements
Similar presentations
State Estimation and Kalman Filtering CS B659 Spring 2013 Kris Hauser.
Advertisements

SA-1 Probabilistic Robotics Planning and Control: Partially Observable Markov Decision Processes.
Dynamic Bayesian Networks (DBNs)
Modeling Uncertainty over time Time series of snapshot of the world “state” we are interested represented as a set of random variables (RVs) – Observable.
Lirong Xia Hidden Markov Models Tue, March 28, 2014.
Lirong Xia Approximate inference: Particle filter Tue, April 1, 2014.
Hidden Markov Models Reading: Russell and Norvig, Chapter 15, Sections
Introduction of Probabilistic Reasoning and Bayesian Networks
Chapter 15 Probabilistic Reasoning over Time. Chapter 15, Sections 1-5 Outline Time and uncertainty Inference: ltering, prediction, smoothing Hidden Markov.
1 Slides for the book: Probabilistic Robotics Authors: Sebastian Thrun Wolfram Burgard Dieter Fox Publisher: MIT Press, Web site for the book & more.
Advanced Artificial Intelligence
1 Reasoning Under Uncertainty Over Time CS 486/686: Introduction to Artificial Intelligence Fall 2013.
10/28 Temporal Probabilistic Models. Temporal (Sequential) Process A temporal process is the evolution of system state over time Often the system state.
CS 188: Artificial Intelligence Fall 2009 Lecture 20: Particle Filtering 11/5/2009 Dan Klein – UC Berkeley TexPoint fonts used in EMF. Read the TexPoint.
4/22: Unexpected Hanging and other sadistic pleasures of teaching  Today: Probabilistic Plan Recognition  Tomorrow: Web Service Composition (BY 510;
Part 3 of 3: Beliefs in Probabilistic Robotics. References and Sources of Figures Part 1: Stuart Russell and Peter Norvig, Artificial Intelligence, 2.
CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California
Part 2 of 3: Bayesian Network and Dynamic Bayesian Network.
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
CS 188: Artificial Intelligence Spring 2007 Lecture 14: Bayes Nets III 3/1/2007 Srini Narayanan – ICSI and UC Berkeley.
CS 188: Artificial Intelligence Fall 2006 Lecture 17: Bayes Nets III 10/26/2006 Dan Klein – UC Berkeley.
CPSC 322, Lecture 32Slide 1 Probability and Time: Hidden Markov Models (HMMs) Computer Science cpsc322, Lecture 32 (Textbook Chpt 6.5) March, 27, 2009.
. Approximate Inference Slides by Nir Friedman. When can we hope to approximate? Two situations: u Highly stochastic distributions “Far” evidence is discarded.
Announcements Homework 8 is out Final Contest (Optional)
Bayesian Filtering for Location Estimation D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello Presented by: Honggang Zhang.
Dynamic Bayesian Networks CSE 473. © Daniel S. Weld Topics Agency Problem Spaces Search Knowledge Representation Reinforcement Learning InferencePlanningLearning.
1 Bayesian Networks Chapter ; 14.4 CS 63 Adapted from slides by Tim Finin and Marie desJardins. Some material borrowed from Lise Getoor.
QUIZ!!  T/F: The forward algorithm is really variable elimination, over time. TRUE  T/F: Particle Filtering is really sampling, over time. TRUE  T/F:
Recap: Reasoning Over Time  Stationary Markov models  Hidden Markov models X2X2 X1X1 X3X3 X4X4 rainsun X5X5 X2X2 E1E1 X1X1 X3X3 X4X4 E2E2 E3E3.
1 Robot Environment Interaction Environment perception provides information about the environment’s state, and it tends to increase the robot’s knowledge.
CS 188: Artificial Intelligence Fall 2006 Lecture 18: Decision Diagrams 10/31/2006 Dan Klein – UC Berkeley.
UIUC CS 498: Section EA Lecture #21 Reasoning in Artificial Intelligence Professor: Eyal Amir Fall Semester 2011 (Some slides from Kevin Murphy (UBC))
Bayes’ Nets: Sampling [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available.
Processing Sequential Sensor Data The “John Krumm perspective” Thomas Plötz November 29 th, 2011.
The famous “sprinkler” example (J. Pearl, Probabilistic Reasoning in Intelligent Systems, 1988)
CPSC 422, Lecture 11Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 11 Oct, 2, 2015.
QUIZ!!  In HMMs...  T/F:... the emissions are hidden. FALSE  T/F:... observations are independent given no evidence. FALSE  T/F:... each variable X.
Tractable Inference for Complex Stochastic Processes X. Boyen & D. Koller Presented by Shiau Hong Lim Partially based on slides by Boyen & Koller at UAI.
1 Chapter 15 Probabilistic Reasoning over Time. 2 Outline Time and UncertaintyTime and Uncertainty Inference: Filtering, Prediction, SmoothingInference:
Tracking with dynamics
1 CMSC 671 Fall 2001 Class #20 – Thursday, November 8.
Probability and Time. Overview  Modelling Evolving Worlds with Dynamic Baysian Networks  Simplifying Assumptions Stationary Processes, Markov Assumption.
1 Chapter 17 2 nd Part Making Complex Decisions --- Decision-theoretic Agent Design Xin Lu 11/04/2002.
The Unscented Particle Filter 2000/09/29 이 시은. Introduction Filtering –estimate the states(parameters or hidden variable) as a set of observations becomes.
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Network Arnaud Doucet Nando de Freitas Kevin Murphy Stuart Russell.
CS Statistical Machine learning Lecture 25 Yuan (Alan) Qi Purdue CS Nov
Reasoning over Time  Often, we want to reason about a sequence of observations  Speech recognition  Robot localization  User attention  Medical monitoring.
CSE 573: Artificial Intelligence Autumn 2012 Particle Filters for Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell,
Probabilistic Robotics Probability Theory Basics Error Propagation Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 Probabilistic Robotics.
Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri CS 440 / ECE 448 Introduction to Artificial Intelligence.
CS 541: Artificial Intelligence Lecture VIII: Temporal Probability Models.
CS 541: Artificial Intelligence Lecture VIII: Temporal Probability Models.
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 12
Today.
Sequential Stochastic Models
Artificial Intelligence
CS 4/527: Artificial Intelligence
Probabilistic Reasoning Over Time
CAP 5636 – Advanced Artificial Intelligence
Probabilistic Reasoning over Time
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 12
Instructors: Fei Fang (This Lecture) and Dave Touretzky
Instructors: Fei Fang (This Lecture) and Dave Touretzky
CS 188: Artificial Intelligence
CS 188: Artificial Intelligence Fall 2008
Chapter14-cont..
Reinforcement Learning Dealing with Partial Observability
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 7
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 7
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 12
Presentation transcript:

11/14  Continuation of Time & Change in Probabilistic Reasoning Project 4 progress? Grade Anxiety? Make-up Class  On Monday?  On Wednesday?

Time and Change in Probabilistic Reasoning

Temporal (Sequential) Process A temporal process is the evolution of system state over time Often the system state is hidden, and we need to reconstruct the state from the observations Relation to Planning: –When you are observing a temporal process, you are observing the execution trace of someone else’s plan…

Dynamic Bayes Networks are “templates” for specifying the relation between the values of a random variable across time-slices  e.g. How is Rain at time t related to Rain at time t+1? We call them templates because they need to be expanded (unfolded) to the required number of time steps to reason about the connection between variables at different time points

While DBNs are special cases of B.N.’s there are a certain inference tasks that are particularly frequently useful for them (Notice that all of them involve estimating posterior probability distributions—as is done in any B.N. inference)

Can do much better if we exploit the repetitive structure Both Exact and Approximate B.N. Inference methods can be made to take the temporal structure into account.  Specialized variable-elimination method  Unfold t+1 th level, and roll-up t th level by variable elimination  Specialized Likelihood-weighting methods that take evidence into account  Particle Filtering Techniques

Can do much better if we exploit the repetitive structure Both Exact and Approximate B.N. Inference methods can be made to take the temporal structure into account.  Specialized variable-elimination method  Unfold t+1 th level, and roll-up t th level by variable elimination  Specialized Likelihood-weighting methods that take evidence into account  Particle Filtering Techniques

Normal LW takes each sample through the network one by one Idea 1: Take then all from t to t+1 lock-step  the samples are the distribution Normal LW doesn’t do well when the evidence is downstream (the sample weight will be too small) In DBN, none of the evidence is affecting the sampling! EVEN MORE of an issue

Special Cases of DBNs are well known in the literature Restrict number of variables per state –Markov Chain: DBN with one variable that is fully observable –Hidden Markov Model: DBN with only one state variable that is hidden and can be estimated through evidence variable(s) Restrict the type of CPD –Kalman Filters: DBN where the system transition function as well as the observation variable are linear gaussian The advantage of Gaussians is that the posterior distribution remains Gaussian

Class Ended here.. Slides beyond this not discussed

Belief States If we have k state variables, 2 k states A “belief state” is a probability distribution over states –Non-deterministic We just know the states for which the probability is non- zero 2 2^k belief states –Stochastic We know the probability distribution over the states Infinite number of probability distributions –A complete state is a special case of belief state where the distribution is “dirac-delta” i.e., non-zero only for one state In blocks world, Suppose we have blocks A and B and they can be “clear”, “on-table” “On” each other -A state: A is on table, B is on table, both are clear, hand is empty -A belief state : A is either on B or on Table B is on table. Hand is empty  2 states in the belief state

Actions and Belief States Two types of actions –Standard actions: Modify the distribution of belief states Doing “C on A” action in the belief state gives us a new belief state (with C on A on B OR C on A; B clear) Doing “Shake-the-Table” action converts the previous belief state to (A on table; B on Table; A clear; B clear) –Notice that actions reduce the uncertainty! Sensing actions –Sensing actions observe some aspect of the belief state –The observations modify the belief state distribution In the belief state above, if we observed that two blocks are clear, then the belief state changes to {A on table; B on table; both clear} If the observation above is noisy (i.e, we are not completely certain), then the probability distribution just changes so more probability mass is centered on the {A on table; B on Table} state. A belief state : A is either on B or on Table B is on table. Hand is empty

Actions and Belief States Two types of actions –Standard actions: Modify the distribution of belief states Doing “C on A” action in the belief state gives us a new belief state (with C on A on B OR C on A; B clear) Doing “Shake-the-Table” action converts the previous belief state to (A on table; B on Table; A clear; B clear) –Notice that actions reduce the uncertainty! Sensing actions –Sensing actions observe some aspect of the belief state –The observations modify the belief state distribution In the belief state above, if we observed that two blocks are clear, then the belief state changes to {A on table; B on table; both clear} If the observation above is noisy (i.e, we are not completely certain), then the probability distribution just changes so more probability mass is centered on the {A on table; B on Table} state. A belief state : A is either on B or on Table B is on table. Hand is empty