UNIT STEP FUNCTION
Solution: Example :
Ex: Write the following function in terms of the unit step function
Ex1: Ex2: Ex3: = ?
Ex: Show that L{ f(t)u(t-a) }=e -as L{ f(t+a) } Proof: L(f(t-a)u(t-a)}=e -as F(s) (1) Let f(t-a)=g(t) then f(t)=g(t+a), put in (1) L{g(t)u(t-a)}=e -as L{g(t+a)}, change from g to f simply L{f(t)u(t-a)}=e -as L{f(t+a)}, Ex:
Impulse Function Define the function f k (t-a) as In terms of unit step functions Dirac delta function or unit impulse function
Mathematical expression for the unit impulse function Some properties of the unit impulse function a)b) c)
Ex: Solve Solution: Taking the laplace transform of both sides y(0)=0, y’(0)=0
Convolution Convolution of f(t) and g(t), h(t) is defined as: Convolution Theorem Let H(s), F(s), and G(s) denote the laplace transforms of h(t), f(t), and g(t). If h is the convolution of f and g, h=f * g then H(s)=F(s)G(s) h(t)=L -1 {F(s)G(s)}
Example:
Laplace transform of tf(t)
Page 264a Continued
Page 264b Continued
Page 264c
Pages a Continued
Pages b Continued
Pages c Continued
Pages d Continued
Pages e Continued
Pages f