Coherent Kondo State in a Dense Kondo Substance : Ce x La 1-x Cu 6 A.Sumiyama et al., J.Phys.Soc.Jpn.55(1986) Shimizu-group Katsuya TOKUOKA.

Slides:



Advertisements
Similar presentations
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Advertisements

1 Pure Metals   increases linearly with increasing temperature  For T  0:   constant Theory Matthiessen's rule.
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Materials Properties Electrical properties Magnetic properties Optical properties.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Spintronics = Spin + Electronics
CHAPTER 5 FREE ELECTRON THEORY
Introduction to the Kondo Effect in Mesoscopic Systems.
M V V K Srinivas Prasad K L University.  Ohm’s Law ◦ At constant temperature the current flowing through a conductor is directly proportional to the.
Magnetic Properties of Materials
Metals: Free Electron Model Physics 355. Free Electron Model Schematic model of metallic crystal, such as Na, Li, K, etc.
Chapter 6: Free Electron Fermi Gas
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Magnetic transition in the Kondo lattice system CeRhSn2
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Electrical Conduction in Solids
Electron coherence in the presence of magnetic impurities
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Vocabulary. The stuff that everything is made of.
Graduate School of Engineering Science, Osaka University
6. Free Electron Fermi Gas Energy Levels in One Dimension Effect of Temperature on the Fermi-Dirac Distribution Free Electron Gas in Three Dimensions Heat.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Spintronics( 自旋電子學 )-GaN-based 稀 磁性半導體 (diluted magnetic semiconductors,DMSs) 學生:黃鋒文.
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Calorimetric Investigation under High Pressure Shimizu-Group M1 Shigeki TANAKA F. Bouquet et al., Solid State Communications 113 (2000)
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Search for superconductivity in CrB 2 under pressure 29A13025 Shimizu Lab Kaide Naohiro.
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Electrical and Thermal Conduction
History of superconductivity
Fabrication of (Fe,Mn)3O4 nanowires using a sidewall deposition method
Dirty Metals and Mott’s minimum metallic conductivity.
Superconducting properties in filled-skutterudite PrOs4Sb12
1 SHIMIZU Group ONODA Suzue Metallization and molecular dissociation of SnI 4 under pressure Ref: A.L. Chen, P.Y. Yu, M.P. Pasternak, Phys. Rev. B. 44,
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Galvanomagnetic effects in electron- doped superconducting compounds D. S. Petukhov 1, T. B. Charikova 1, G. I. Harus 1, N. G. Shelushinina 1, V. N. Neverov.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
ELECTRON THEORY OF METALS 1.Introduction: The electron theory has been developed in three stages: Stage 1.:- The Classical Free Electron Theory : Drude.
Introduction to Semiconductor Technology. Outline 3 Energy Bands and Charge Carriers in Semiconductors.
From Local Moment to Mixed-Valence Regime in Ce 1−x Yb x CoIn 5 alloys Carmen Almasan, Kent State University, DMR Ce 1−x Yb x CoIn 5 alloys have.
Properties of matter. Physical Property Can be observed/measured without changing the identity of the matter Can be observed/measured without changing.
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Lecture schedule October 3 – 7, 2011
Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature.
 The classification of matter as a solid, liquid, or gas.
Physics 121 Lecture Summaries Contents: – 11/17/2012 Lecture 1Introduction to Fields Lecture 2Electric Charge Lecture 3Electric Field Lecture 4Gauss’s.
Quantum Hall Effect and Fractional Quantum Hall Effect.
Resistance Minimum in Dilute Magnetic Alloys Ref)Jun Kondo Resistance Minimum in Dilute Magnetic Alloys Prog. Theor. Phys.32(1964)37-49 Osaka Univ. Miyake.
Chapter 7 in the textbook Introduction and Survey Current density:
Free Electron Model. So far: –How atoms stick together (bonding) –Arrangement of atoms (crystal lattice) – Reciprocal lattice –Motion of atomic cores.
Free electron Fermi gas ( Sommerfeld, 1928 ) M.C. Chang Dept of Phys counting of states Fermi energy, Fermi surface thermal property: specific heat transport.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Electrical Properties of Materials
Transport property of the iodine doped
Physics 121 Lecture Summaries
Fermi Wavevector 2-D projection ky of 3-D k-space dk
Kondo effect Him Hoang
Presentation transcript:

Coherent Kondo State in a Dense Kondo Substance : Ce x La 1-x Cu 6 A.Sumiyama et al., J.Phys.Soc.Jpn.55(1986) Shimizu-group Katsuya TOKUOKA

Contents Introduction ■ Dilute Kondo effect ■ Coherent Kondo effect Experimental data about Ce x La 1-x Cu 6 Summary

The simple metallic resistivity Impurity scattering T (K) 10 2 R / R 290K Residual resistivity (残留抵抗 ) The resistivity decreases monotonically as the temperature decreases. potassium C.Kittel Introduction to Solid State Physics

Kondo effect Discovery of the resistivity minimum in dilute magnetic alloys( 希薄磁性合金 ).(1930’s) The electrical resistivity increases steeply as the temperature decreases In the low temperature region. Jun Kondo has derived the logarithmic increase of the resistivity in the low temperature region. (1964) → 40 th anniversary in 2004 ! de Haas et al., Physica 1 (1934)

Dilute Kondo effect( 希薄系近藤効果 ) T > T K T < T K But this Kondo effect does not appear if the metal contains a large amount of magnetic impurities. Spin singlet ( スピン一重項 ) S = 0 de Haas et al., Physica 1 (1934) 1115 T K : 近藤温度

A new type Kondo effect In Ce compounds, although it contains a large amount of magnetic impurities (>10%), Kondo effect appeared. Y.Ōnuki et al., J.Phys.Soc.Jpn. 53 (1984) Temperature dependence of resistivity in CeCu6

f - electron |r R(r)| 2 r (a.u.) Lanthanoides La 3+ Ce 3+ Pr 3+ … 4f-electrons Closed shell 5s 2 5p 6 f - electron is localized.

Coherent (Dense) Kondo effect ( 高濃度近藤効果 ) T > T K T < T K f-localized ( 局在 ) f-itinerant ( 遍歴 ) In Ce compounds, the Kondo effect appears. Y.Ōnuki et al., J.Phys.Soc.Jpn. 53 (1984) Heavy fermion state ( 重い電子状態 ) Dilute

Coherent Kondo substance CeCu 6 Coherent Kondo substance Pauli paramagnet ( パウリ常磁性 ) (no magnetic ordering) Large specific heat coefficient ( 電子比熱係数 ) Crystal structure of CeCu6 Y.Onuki et al., J.Phys.Soc.Jpn. 54 (1985) γ= 1.6 J / mole·K 2 The effective mass ( 有効質量 ) is 1000 times or more as large as the free electron mass !

Motivation LaCu6 is a normal metal which has the same structure. (no f – electrons) To clarify the process from the incoherent Kondo state to the coherent Kondo state, we can investigate the compound : Ce x La 1-x Cu 6 (x=0-1). Dilute (incoherent) Dense(Coherent) Ce density x : 0 1

Experiment Single crystals of Ce x La 1-x Cu 6 were grown by the Czochralski pulling method. a large single crystal ! Measurements ・ electrical resistivity from 300 K~ 18 mK ・ magnetoresistance ( 磁気抵抗効果 )

Temperature dependence of electrical resistivity Electrical resistivity increases as temperature increases in the low temperature region. A maximum appeared around 5-15 K for an x value of f-electrons are itinerant in the low temperature region. Temperature dependence of electrical resistivity in Ce x La 1-x Cu 6

Magnetic resistivity ρ m = ρ Ce x La 1-x Cu 6 - ρ LaCu 6 (magnetic resistivity) ρ( T ) = ρ 0 + ρ e-e (T) + ρ m (T) The normal metal ρ( T ) = ρ 0 + ρ e-e (T) (Matthiessen’s rule) The magnetic substance

Magnetic resistivity Dilute x = – 0.50 Coherent x = 0.73 – 1.0 Consecutive change from dilute to coherent Temperature dependence of magnetic resistivity in Ce x La 1-x Cu 6

Magnetoresistance A effective method to investigate heavy fermion system In normal metal Cyclotron motion → The resistivity increases. Heavy fermion system magnetization → The resistivity decreases due to magnetic ordering. I H b c a

Magnetic field dependence of resistivity Magnetoresistance at 1.5 K Dilute Kondo system ρhas a Maximum around 20 kOe. Because of the suppression of the coherent Kondo effect, the resistivity increases. Itinerant localized The coherent Kondo effect is suppressed by applied magnetic field. Magnetic field dependence of resistivity in CeCu 6

Summary Dilute Kondo effect appears for x = – Coherent Kondo effect appears for x = 0.73 – 1.0. Consecutive change from dilute Kondo state to coherent Kondo state occurs. The coherent Kondo effect is suppressed by applying a magnetic field.