GALPROP tutorial Igor Moskalenko (Stanford U.). Igor V. Moskalenko 2 November 17, 2005GALPROP manual/Rome2, Italy Obtaining GALPROP The link:

Slides:



Advertisements
Similar presentations
New Insights into the Acceleration and Transport of Cosmic Rays in the Galaxy or Some Simple Considerations J. R. Jokipii University of Arizona Presented.
Advertisements

Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Light. Photons The photon is the gauge boson of the electromagnetic force. –Massless –Stable –Interacts with charged particles. Photon velocity depends.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Challenges in Revealing Dark Matter from the High Energy Gamma-Ray Background (Continuum) Ranga-Ram Chary Spitzer Science Center, Caltech
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
SLAC, June 23 rd Dark Matter in Galactic Gamma Rays Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray Large Area Space Telescope.
Igor V. Moskalenko NASA Goddard Space Flight Center with Andy W. StrongStepan G. Mashnik Andy W. Strong (MPE, Germany) & Stepan.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
Igor V. Moskalenko (Stanford) with S. Digel (SLAC) T. Porter (UCSC) O. Reimer (Stanford) O. Reimer (Stanford) A. W. Strong (MPE) A. W. Strong (MPE) Diffuse.
CMB constraints on WIMP annihilation: energy absorption during recombination Tracy Slatyer – Harvard University TeV Particle Astrophysics SLAC, 14 July.
Cosmic Ray Transport in the Galaxy Vladimir Ptuskin IZMIRAN, Russia.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.
Igor V. Moskalenko (Stanford) GALPROP Model for Galactic CR propagation and diffuse γ -ray emission.
Igor V. Moskalenko & Andy W. Strong NASA/GSFC MPE, Germany with Olaf Reimer Bochum, Germany Topics to cover: GALPROP: principles, internal structure, recent.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Igor V. Moskalenko (Stanford U.) with A.Strong (MPE), S.Digel (SLAC), T.Porter (USCS), O.Reimer (SU) Modeling of the Galactic diffuse continuum γ-ray emission.
Igor V. Moskalenko (Stanford U.) Challenges in Astrophysics of CR (knee--) & γ-rays Topics covered:  Intro to the relevant physics  Modeling of the CR.
Antiprotons of interstellar origin at balloon altitudes: Flux simulations U. B. Jayanthi, K. C. Talavera Instituto Nacional de Pesquisas Espaciais (INPE),
HEAD 2010 – Mar.3, 2010 :: IVM/Stanford-KIPAC 1IVM/Stanford-KIPAC 1 PAMELA Workshop, Rome/May 12, 2009 Igor V. Moskalenko (stanford/kipac) Leptons in Cosmic.
Aspen 4/28/05Physics at the End of the Galactic Cosmic Ray Spectrum - “Below the Knee” Working Group “Below the Knee” Working Group Report - Day 3 Binns,
High-energy electrons, pulsars, and dark matter Martin Pohl.
ORBITAL DECAY OF HIGH VELOCITY CLOUDS LUMA FOHTUNG UW-Madison Astrophysics REU 2004 What is the fate of the gas clouds orbiting the MilkyWay Galaxy?
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
Interaction of Cosmic-Rays with the Solar System Bodies as seen by Fermi LAT Monica Brigida Bari University For the Fermi LAT Collaboration.
Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.
38 th COSPAR, Bremen – July 18, 2010 :: IVM/Stanford-KIPAC 1 Galactic Cosmic Rays Igor V. Moskalenko Stanford & KIPAC Igor V. Moskalenko Stanford & KIPAC.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
Gamma ray interaction with matter A) Primary interactions 1) Coherent scattering (Rayleigh scattering) 2) Incoherent scattering (Compton scattering) 3)
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
E.G.Berezhko, L.T. Ksenofontov Yu.G.Shafer Institute of Cosmophysical Research and Aeronomy Yakutsk, Russia Energy spectra of electrons and positrons,
Discovery of K  lines of neutral S, Ar, Ca, Cr, & Mn atoms from the Galactic center with Suzaku Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru,
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
Igor V. Moskalenko (Stanford) with Seth Digel (SLAC) Troy Porter (LSU) Olaf Reimer (Stanford) Olaf Reimer (Stanford) Andrew W. Strong (MPE) Andrew W. Strong.
Cosmic rays, antimatter, dark matter: the need for cross section data
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Voyager Observations of Galactic Cosmic Ray Transport in the Heliosheath and their Reacceleration at the Termination Shock F.B. McDonald 1, W.R. Webber.
ISCRA – Erice July 2004 Ana Sofía Torrentó Coello - CIEMAT THE AMS EXPERIMENT Ana Sofía Torrentó Coello – CIEMAT (Spain) On behalf of AMS Collaboration.
Interstellar gamma-rays: first large-scale results from Fermi-LAT Andy Strong on behalf of Fermi-LAT collaboration ICRC Lodz 7-15 July 2009 OG2.1 ID 0390.
Modified from talk of Igor V. Moskalenko (Stanford U.) GALPROP & Modeling the Diffuse  -ray Emission.
Topics on Dark Matter Annihilation
Diffuse Galactic Emission
HARD X-RAY/SOFT g-RAY OBSERVATIONS OF THE GALACTIC DIFFUSE EMISSION WITH INTEGRAL/SPI SPI SPECTROMETER (20 keV – 8 MeV, foV 30°) ONBOARD INTEGRAL OBSERVATORY.
Current work on GALPROP
Dark Matter in Galactic Gamma Rays
20 diffuse catalogue fans
Gamma-ray Albedo of the Moon Igor V. Moskalenko (Stanford) & Troy A
Optimizing Galaxy Simulations using FGST Observations
Status and issues for the LAT interstellar emission model
High Energy emission from the Galactic Center
Splinter section: Diffuse emission
Testing the origin of high- energy cosmic rays
Propagation of cosmic rays
Isotopic abundances of CR sources
Galactic Diffuse Emission for DC2
International Workshop
on behalf of the Fermi-LAT Collaboration
Diffuse Gamma-Rays seen by Fermi Gamma-ray Space Telescope
Using Z≤2 data to constrain cosmic-ray propagation models
Presentation transcript:

GALPROP tutorial Igor Moskalenko (Stanford U.)

Igor V. Moskalenko 2 November 17, 2005GALPROP manual/Rome2, Italy Obtaining GALPROP The link: Contains c++, fortran routines & input files (dat-files, compass gas maps, and isrf) Dedicated GALPROP Web-site will go online soon! –Controlled changes in GALPROP: tests + documentation +… –New version(s) + archive versions –Post relevant information: best models, gas maps, ISRF, nuclear cross sections… –Allow for communication with users –Ability to run GALPROP on-line…

Igor V. Moskalenko 3 November 17, 2005GALPROP manual/Rome2, Italy I/O galdef-file gas: COR, HIR, IAQ-files RFComposite –(fits) file dat-files (xsec, nuc.network) GALPROP (c++ & fortran) nuclei –(fits) file (R=Rsun) nuclei_full –(fits) file (whole galaxy) γ-ray emissivities –(fits) files (brems, IC, π 0 ) γ-ray skymaps –(fits) files (rings; brems, IC, π 0 ) FITS GALDEF v42.3 FITS same level dirs Heliospheric modulation: on-the-fly in a plotting routine

Igor V. Moskalenko 4 November 17, 2005GALPROP manual/Rome2, Italy Example Makefile #CXX = g #FC = g CFITSIO = ${GLAST_EXT}/cfitsio/v2470 CPPFLAGS = -O3 -Wno-deprecated -I${CFITSIO}/include FFLAGS = LIBS = -lm -lg2c FITSLIB = -L$(CFITSIO)/lib -lcfitsio -Wl, rpath,$(CFITSIO)/lib LDFLAGS = $(FITSLIB) $(LIBS) FOBJS := $(patsubst %.f,%.o,$(wildcard *.f)) CCOBJS := $(patsubst %.cc,%.o,$(wildcard *.cc)) galprop: ${FOBJS} ${CCOBJS} $(CXX) *.o -o ${LDFLAGS}

Igor V. Moskalenko 5 November 17, 2005GALPROP manual/Rome2, Italy Some Editing Tested for g++ v2.9x compiler. New g++ compiler v3.x is more strict –routines require some editing: using namespace std; #include

Igor V. Moskalenko 6 November 17, 2005GALPROP manual/Rome2, Italy GALPROP Input: galdef-files GALPROP is parameter-driven (user can specify everything!) Grids 2D/3D –options; symmetry options (full 3D, 1/8 -quadrants) Spatial, energy/momentum, latitude & longitude grids Ranges: energy, R, x, y, z, latitude & longitude Time steps Propagation parameters D xx, V A, V C & injection spectra (p,e) X-factors (including R-dependence) Sources Parameterized distributions Known SNRs Random SNRs (with given/random spectra), time dependent eq. Other Source isotopic abundances, secondary particles (pbar, e ±, γ, synchro), anisotropic IC, energy losses, nuclear production cross sections…

Igor V. Moskalenko 7 November 17, 2005GALPROP manual/Rome2, Italy Algorithm primary source functions (p, He, C.... Ni) source abundances, spectra primary propagation -starting from maxA=64 source functions (Be, B...., e +,e -, pbars) using primaries and gas distributions secondary propagation tertiary source functions tertiary propagation  -rays (IC, bremsstrahlung, π o -decay) radio: synchrotron (i) CR –fixing propagation (ii) γ-rays

Igor V. Moskalenko 8 November 17, 2005GALPROP manual/Rome2, Italy GALPROP Output/FITS files Provides literally everything: All nuclei and particle spectra in every grid point (x,y,R,z,E) -FITS files Separately for π 0 -decay, IC, bremsstrahlung: Emissivities in every grid point (x,y,R,z,E,process) Skymaps with a given resolution (l,b,E,process) Output of maps separated into H I, H 2, and rings to allow fitting X, metallicity gradient etc.

Igor V. Moskalenko 9 November 17, 2005GALPROP manual/Rome2, Italy Spatial Grids Z R,x,y Typical grid steps (can be arbitrary!) Δz = 0.1 kpc, ΔΔz = 0.01 kpc (gas averaging) ΔR = 1 kpc ΔE = x1.2 (log-grid)

Igor V. Moskalenko 10 November 17, 2005GALPROP manual/Rome2, Italy GALPROP Calculations Constraints Bin size (x,y,z) depends on the computer speed, RAM; final run can be done on a very fine grid ! No other constraints ! –any required process/formalism can be implemented Calculations (γ -ray related)  Vectorization options  Now 64 bit to allow unlimited arrays  Heliospheric modulation: routinely force-field, more sophisticated model ? 1.For a given propagation parameters: propagate p, e, nuclei, secondaries (currently in 2D) 2.The propagated distributions are stored 3.With propagated spectra: calculate the emissivities (π 0 -decay, IC, bremss) in every grid point 4.Integrate the emissivities over the line of sight: GALPROP has a full 3D grid, but currently only 2D gas maps (H2, H I, H II) Using actual annular maps (column density) at the final step High latitudes above b=40˚ -using integrated H I distribution

Igor V. Moskalenko 11 November 17, 2005GALPROP manual/Rome2, Italy Dark Matter in GALPROP DM annihilation products: χ 0 χ 0 −> p, pbar, e +, e −, γ A set of routines (gen_DM_source.cc) to assign The DM density profile (NFW, isothermal etc.) Source functions for p, pbar, e +, e − Source function for γ’s A set of user-defined parameters (10 int, 10 double precision) in galdef-file  DM annihilation products particles are propagated in the same model as CR particles.  Calculation of skymaps for DM γ-rays

Igor V. Moskalenko 12 November 17, 2005GALPROP manual/Rome2, Italy galdef_44_ I

Igor V. Moskalenko 13 November 17, 2005GALPROP manual/Rome2, Italy galdef_44_ II

Igor V. Moskalenko 14 November 17, 2005GALPROP manual/Rome2, Italy galdef_44_ III

Igor V. Moskalenko 15 November 17, 2005GALPROP manual/Rome2, Italy galdef_44_ IV

Igor V. Moskalenko 16 November 17, 2005GALPROP manual/Rome2, Italy Nuclear Reaction Network+Cross Sections p,EC,β + β -, n Be 7 Be 10 Al 26 Cl 36 Mn 54 Plus some dozens of more complicated reactions. But many cross sections are not well known… V 49 Ca 41 Cr 51 Fe 55 Co 57 Ar 37 Secondary, radioactive ~1 Myr & K-capture isotopes

Igor V. Moskalenko 17 November 17, 2005GALPROP manual/Rome2, Italy Nuclear Reaction Network III I II IV V nuc_package.cc

Igor V. Moskalenko 18 November 17, 2005GALPROP manual/Rome2, Italy nuc_package.cc: Stable & Long-lived Isotopes

Igor V. Moskalenko 19 November 17, 2005GALPROP manual/Rome2, Italy nuc_package.cc: Long-Lived Isotopes

Igor V. Moskalenko 20 November 17, 2005GALPROP manual/Rome2, Italy nuc_package.cc: “Boundary” Nuclei

Igor V. Moskalenko 21 November 17, 2005GALPROP manual/Rome2, Italy isotope_cs_eval.dat

Igor V. Moskalenko 22 November 17, 2005GALPROP manual/Rome2, Italy Transport Equations ~90 (no. of CR species) ψ(r,p,t) – ψ(r,p,t) – density per total momentum sources (SNR, nuclear reactions…) convection diffusion diffusive reacceleration E-loss convection fragmentation radioactive decay

Igor V. Moskalenko 23 November 17, 2005GALPROP manual/Rome2, Italy Finite Differencing

Igor V. Moskalenko 24 November 17, 2005GALPROP manual/Rome2, Italy Finite Differencing: Example

Igor V. Moskalenko 25 November 17, 2005GALPROP manual/Rome2, Italy Tri-Diagonal Matrix

Igor V. Moskalenko 26 November 17, 2005GALPROP manual/Rome2, Italy Coefficients for the Crank-Nicholson Method

Igor V. Moskalenko 27 November 17, 2005GALPROP manual/Rome2, Italy Near Future Developments Full 3D Galactic structure: 3D gas maps (from S.Digel, S.Hunter and/or smbd else) 3D interstellar radiation & magnetic fields (A.Strong & T.Porter) Cross sections: Blattnig et al. formalism for π 0 -production Diffractive dissociation with scaling violation (T.Kamae –param.) Isotopic cross sections (with S.Mashnik, LANL; try to motivate BNL, JENDL-Japan, other Nuc. Data Centers) Modeling the local structure: Local SNRs with known positions and ages Local Bubble, local clouds –may be done at the final calculation step (grid bin size ??) Energy range: Extend toward sub-MeV range to compare with INTEGRAL diffuse emission (continuum; 511 keV line) Heliospheric modulation: Implementing a modern formalism (Potgieter, Zank etc.) Visualization tool (started) using the classes of CERN ROOT package: images, profiles, and spectra from GALPROP to be directly compared with data Improving the GALPROP module structure (for DM studies)

Igor V. Moskalenko 28 November 17, 2005GALPROP manual/Rome2, Italy More developments  Point sources: develop algorithm(s) for modeling the background and interface to the rest of GLAST software  Instrumental response: how to implement  Diffuse emission analysis has to include point source catalog!  At least, two diffuse models: with/without the “excess”  Develop test case(s) to test the accuracy of the numerical model (simple gas distribution, no energy losses, uniform ISRF etc.)  Complete C++ package: rewrite several fortran routines in C++  Develop a fitting procedure to make automatic fitting to B/C ratio, CR spectra and abundances  Develop a dedicated Web-site: –Controlled changes in GALPROP: tests +documentation +… –Allow for communication with users –Post relevant information: best models, gas maps, ISRF, nuclear cross sections… –Ability to run GALPROP on-line…

Igor V. Moskalenko 29 November 17, 2005GALPROP manual/Rome2, Italy Fixing Propagation Parameters: Standard Way Using secondary/primary nuclei ratio: Diffusion coefficient and its index Propagation mode and its parameters (e.g., reacceleration V A, convection V z ) Radioactive isotopes: Galactic halo size Z h Z h increase B/C Be 10 /Be 9 Interstellar E k, MeV/nucleon

Igor V. Moskalenko 30 November 17, 2005GALPROP manual/Rome2, Italy Peak in the Secondary/Primary Ratio Leaky-box model: fitting path-length distribution -> free function B/C Diffusion models:  Diffusive reacceleration  Convection  Damping of interstellar turbulence  Etc. Accurate measurements in a wide energy range may help to distinguish between the models E k, MeV/nucleon too sharp max?

Igor V. Moskalenko 31 November 17, 2005GALPROP manual/Rome2, Italy Distributed Stochastic Reacceleration Fermi 2-nd order mechanism B Scattering on magnetic turbulences D pp ~ p 2 V a 2 /D D ~ vR 1/3 - Kolmogorov spectrum I cr E strong reacceleration weak reacceleration ΔEΔE Simon et al Seo & Ptuskin /3 D xx = 5.2x10 28 (R/3 GV) 1/3 cm -2 s -1 V a = 36 km s -1 γ ~ R -δ, δ=1.8/2.4 below/above 4 GV

Igor V. Moskalenko 32 November 17, 2005GALPROP manual/Rome2, Italy Convection Galactic wind Escape length Xe E v R -0.6 wind or turbulent diffusion resonant diffusion Jones 1979 problem: too broad sec/prim peak D~R 0.6 D xx = 2.5x10 28 (R/4 GV) 0.6 cm -2 s -1 dV/dz = 10 km s -1 kpc -1 γ ~ R -δ, δ=2.46/2.16 below/above 20 GV

Igor V. Moskalenko 33 November 17, 2005GALPROP manual/Rome2, Italy Damping of Interstellar Turbulence Iroshnikov-Kraichnan cascade: Kolmogorov cascade: W(k) k dissipation 1/10 12 cm 1/10 20 cm Simplified case: 1-D diffusion No energy losses Mean free path nonlinear cascade Ptuskin et al. 2003, 2005

Igor V. Moskalenko 34 November 17, 2005GALPROP manual/Rome2, Italy Dxx – Diffusion Coefficient Plain diffusion Diffusive reacceleration Reacceleration with damping ~R 0.6 ~β -3

Igor V. Moskalenko 35 November 17, 2005GALPROP manual/Rome2, Italy Positrons/electrons p+p->π,K->e ± (MS 1998) –Dermer 1986 method: LE –Stecker Δ-isobar model (isotropic decay), HE –scaling (inv. x-section: Stephens & Badhwar 1981), plus interpolation in between –Pion decay “includes” polarization of muons –Kaon decay – scaling (Stephens & Badhwar 1981) Antiprotons (M et al. 2002) –pp Inclusive production x-section (Tan & Ng 1983) –pA, AA-> pbar –scaling using Gaisser & Schaeffer 1992 or Simon et al –results similar –Total inelastic x-section (p: TN’83, A: Moiseev & Ormes 1997) –p+pbar annihilation x-section = (p+pbar) tot – (p+p) tot (LE: TN’83, HE: PDG’00 –Regge parameterization) How It Is Really Done: Secondary Particles

Igor V. Moskalenko 36 November 17, 2005GALPROP manual/Rome2, Italy Elemental Abundances: CR vs. Solar System CR abundances: ACE Solar system abundances LiBeB CNO F Fe ScTiV CrMn Si Cl Al O Volatility Na S “input” “output”

Igor V. Moskalenko 37 November 17, 2005GALPROP manual/Rome2, Italy Fitting to Measured CR Abundances (ACE vs HEAO-3) Fitting to measured CR abundances in the wide energy range (~0.1 – 30 GeV) is problematic: May indicate systematic or cross-calibration errors

Igor V. Moskalenko 38 November 17, 2005GALPROP manual/Rome2, Italy Total Nuclear Cross Sections E kin, MeV/nucleon Wellisch & Axen 1996

Igor V. Moskalenko 39 November 17, 2005GALPROP manual/Rome2, Italy Isotopic Production Cross Sections of LiBeB Semi-empirical systematics are not always correct. Results obtained by different groups are often inconsistent and hard to test. Very limited number of nuclear measurements: Evaluating the cross section is very laborious and can’t be done without modern nuclear codes. Use LANL nuclear database and modern computer codes.

Igor V. Moskalenko 40 November 17, 2005GALPROP manual/Rome2, Italy LiBeB: Major Production Channels Propagated Abundance * Cross-section Be B C Li N O Li Well defined (65%): C 12, O 16 ->LiBeB N 14 -> Be 7 (see Moskalenko & Mashnik 28 ICRC, 2003) Few measurements: C 13,N -> LiBeB B -> BeB Unknown: LiBeB,C 13,N -> LiBeB  “Tertiary” reactions also important! -35% A=

Igor V. Moskalenko 41 November 17, 2005GALPROP manual/Rome2, Italy Effect of Cross Sections: Radioactive Secondaries Different size from different ratios… Z halo,kp c ST W 27 Al+p  26 Al Errors in CR measurements (HE & LE)Errors in CR measurements (HE & LE) Errors in production cross sectionsErrors in production cross sections Errors in the lifetime estimatesErrors in the lifetime estimates Different origin of elements (Local Bubble ?)Different origin of elements (Local Bubble ?) nat Si+p  26 Al W ST T 1/2 = ? E k, MeV/nucleon

Igor V. Moskalenko 42 November 17, 2005GALPROP manual/Rome2, Italy How It Is Really Done: Nucleons Calculated for p+A reactions and scaled for α+A (Ferrando et al. 1988) Calculation of total nuclear cross sections –Letaw et al –Wellisch & Axen 1996 (corrected), Z>5 –Barashenkov & Polanski 2001 Calculation of isotopic production cross sections –Webber et al (non-renormalized, renormalized); E>200 MeV/nucleon, essentially flat –Silberberg & Tsao 2000 (non-renormalized, renormalized); claim that it works at all energies, but is problematic sometimes –Fits to the available data (LANL, Webber et al., etc.) in the form of a function or a table (see.dat files), but data may not be always available –Use the best of all three, but very time consuming work Nuclear reaction network –Nuclear Data Tables (includes several decay channels + branching) –Standard β ± -decay, emission of p, n –K-capture isotopes can be treated separately

Igor V. Moskalenko 43 November 17, 2005GALPROP manual/Rome2, Italy Interstellar Gas ► Extend CO surveys to high latitudes – newly-found small molecular clouds will otherwise be interpreted as unidentified sources, and clearly limit dark matter studies ► C 18 O observations (optically thin tracer) of special directions (e.g. Galactic center, arm tangents) – assess whether velocity crowding is affecting calculations of molecular column density, and for carefully pinning down the diffuse emission Galactic Latitude CfA 1.2m Galactic Longitude Dame, Hartmann, & Thaddeus (2001) Dame & Thaddeus (2004)

Igor V. Moskalenko 44 November 17, 2005GALPROP manual/Rome2, Italy Distribution of Interstellar Gas Neutral interstellar medium –21-cm H I & 2.6-mm CO (stand in for H 2 ) Near-far distance ambiguity, rotation curve, optical depth effects, … Dame et al. (1987) Hartmann & Burton (1997) (25°, 0°) W. Keel CO H I G.C. 25° Seth Digel

Igor V. Moskalenko 45 November 17, 2005GALPROP manual/Rome2, Italy Seth Digel’05

Igor V. Moskalenko 46 November 17, 2005GALPROP manual/Rome2, Italy Gas Distribution Sun Molecular hydrogen H 2 is traced using J=1-0 transition of 12 CO, concentrated mostly in the plane (z~70 pc, R<10 kpc) Atomic hydrogen H I (radio 21 cm) has a wider distribution (z~1 kpc, R~30 kpc) Ionized hydrogen H II (visible, UV, X) small proportion, but exists even in halo (z~1 kpc) Z=0,0.1,0.2 kpc

Igor V. Moskalenko 47 November 17, 2005GALPROP manual/Rome2, Italy Gas Rings: HI (Inner & Outer Galaxy) Seth Digel’05

Igor V. Moskalenko 48 November 17, 2005GALPROP manual/Rome2, Italy Seth Digel’05 Gas Rings: HI (Our Neighborhood)

Igor V. Moskalenko 49 November 17, 2005GALPROP manual/Rome2, Italy Bremsstrahlung (Koch & Motz 1959, SMR2000) –many different regimes: –LE: 0.01 < E kin < 0.07 MeV –nonrelativistic non-screened brems –Intermediate: 0.07 < E kin <2 MeV –HE: E kin > 2 MeV arbitrary screening: unshielded charge, 1-, 2- electron atoms (form factors, Hylleraas, Hertree-Fock wave functions) –Fano-Sauter limit: k->E kin “Anisotropic” IC (MS2000) –Takes into account the anisotropic angular distribution of background photons Neutral pion decay (see “secondary positrons/electrons”) Synchrotron radiation (Ginzburg 1979, Ghisellini et al. 1988) –Averaging over pitch angle –Uses total magnetic field (regular + random) Emissivities: uses “real” H 2, H I gas column densities (“rings”) Skymap calculations: integration over the line of sight How It Is Really Done: Gammas

Igor V. Moskalenko 50 November 17, 2005GALPROP manual/Rome2, Italy Uncertainties in the Propagation Models Production cross sections of isotopes and pbars Typical errors ~50%  Fitting to B/C ratio may introduce errors in D xx Propagation models and parameters  Gas distribution in the Galaxy Ambient spectrum of CR (solar modulation, GeV excess in γ’s !)  Current knowledge of CR diffusion Heliospheric modulation  Depends on rigidity  Similar for all nuclei A/Z~ +2 Different for protons A/Z=+1 and pbars A/Z=-1 Systematic errors of measurements Difficult to account for Simultaneous measurements of Li, Be, B, C, secondary e +, p in a wide energy range ~100 MeV/nucleon – 100 GeV/nucleon are needed to understand CR propagation and distinguish between the models: looking forward to Pamela launch! _