EE-2027 SaS, L18 1/12 Lecture 18: Discrete-Time Transfer Functions 7 Transfer Function of a Discrete-Time Systems (2 lectures): Impulse sampler, Laplace.

Slides:



Advertisements
Similar presentations
Lecture 7: Basis Functions & Fourier Series
Advertisements

Signal and System I Causality ROC for n < 0 causal All z -n terms, not include any z terms If and only if ROC is exterior of a circle and include.
ELEN 5346/4304 DSP and Filter Design Fall Lecture 7: Z-transform Instructor: Dr. Gleb V. Tcheslavski Contact:
AMI 4622 Digital Signal Processing
EE-2027 SaS 06-07, L11 1/12 Lecture 11: Fourier Transform Properties and Examples 3. Basis functions (3 lectures): Concept of basis function. Fourier series.
Lecture 4: Linear Systems and Convolution
EE-2027 SaS, L13 1/13 Lecture 13: Inverse Laplace Transform 5 Laplace transform (3 lectures): Laplace transform as Fourier transform with convergence factor.
Lecture 19: Discrete-Time Transfer Functions
Lecture 16: Continuous-Time Transfer Functions
Lecture 17: Continuous-Time Transfer Functions
Lecture 5: Linear Systems and Convolution
EE-2027 SaS, L15 1/15 Lecture 15: Continuous-Time Transfer Functions 6 Transfer Function of Continuous-Time Systems (3 lectures): Transfer function, frequency.
Lecture 8: Fourier Series and Fourier Transform
Lecture 14: Laplace Transform Properties
EE-2027 SaS, L10: 1/13 Lecture 10: Sampling Discrete-Time Systems 4 Sampling & Discrete-time systems (2 lectures): Sampling theorem, discrete Fourier transform.
EE-2027 SaS, L11 1/13 Lecture 11: Discrete Fourier Transform 4 Sampling Discrete-time systems (2 lectures): Sampling theorem, discrete Fourier transform.
Lecture 9: Fourier Transform Properties and Examples
Lecture 6: Linear Systems and Convolution
Lecture #07 Z-Transform meiling chen signals & systems.
Z-Transform Fourier Transform z-transform. Z-transform operator: The z-transform operator is seen to transform the sequence x[n] into the function X{z},
Lecture 12: Laplace Transform
Image (and Video) Coding and Processing Lecture 2: Basic Filtering Wade Trappe.
EE513 Audio Signals and Systems Digital Signal Processing (Systems) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
UNIT - 4 ANALYSIS OF DISCRETE TIME SIGNALS. Sampling Frequency Harry Nyquist, working at Bell Labs developed what has become known as the Nyquist Sampling.
Properties of the z-Transform
The z-Transform Prof. Siripong Potisuk. LTI System description Previous basis function: unit sample or DT impulse  The input sequence is represented.
10.0 Z-Transform 10.1 General Principles of Z-Transform linear, time-invariant Z-Transform Eigenfunction Property y[n] = H(z)z n h[n]h[n] x[n] = z n.
University of Khartoum -Signals and Systems- Lecture 11
EE3010 SaS, L7 1/19 Lecture 7: Linear Systems and Convolution Specific objectives for today: We’re looking at continuous time signals and systems Understand.
CISE315 SaS, L171/16 Lecture 8: Basis Functions & Fourier Series 3. Basis functions: Concept of basis function. Fourier series representation of time functions.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Modulation Summation Convolution Initial Value and Final Value Theorems Inverse.
1 1 Chapter 3 The z-Transform 2 2  Consider a sequence x[n] = u[n]. Its Fourier transform does not converge.  Consider that, instead of e j , we use.
Z Transform Chapter 6 Z Transform. z-Transform The DTFT provides a frequency-domain representation of discrete-time signals and LTI discrete-time systems.
1 Z-Transform. CHAPTER 5 School of Electrical System Engineering, UniMAP School of Electrical System Engineering, UniMAP NORSHAFINASH BT SAUDIN
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
Department of Computer Eng. Sharif University of Technology Discrete-time signal processing Chapter 3: THE Z-TRANSFORM Content and Figures are from Discrete-Time.
1 Lecture 1: February 20, 2007 Topic: 1. Discrete-Time Signals and Systems.
Z TRANSFORM AND DFT Z Transform
ES97H Biomedical Signal Processing
ES97H Biomedical Signal Processing
Digital Signal Processing
Signal and Systems Prof. H. Sameti Chapter 10: Introduction to the z-Transform Properties of the ROC of the z-Transform Inverse z-Transform Examples Properties.
The Z-Transform Quote of the Day Such is the advantage of a well-constructed language that its simplified notation often becomes the source of profound.
Motivation for the Laplace Transform
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
Lecture 5 – 6 Z - Transform By Dileep Kumar.
Sampling and Reconstruction The impulse response of an continuous-time ideal low pass filter is the inverse continuous Fourier transform of its frequency.
Lecture 4: The z-Transform 1. The z-transform The z-transform is used in sampled data systems just as the Laplace transform is used in continuous-time.
Signals and Systems Lecture #6 EE3010_Lecture6Al-Dhaifallah_Term3321.
DISP 2003 Lecture 5 – Part 1 Digital Filters 1 Frequency Response Difference Equations FIR versus IIR FIR Filters Properties and Design Philippe Baudrenghien,
Signals and Systems Using MATLAB Luis F. Chaparro.
Chapter 2 The z-transform and Fourier Transforms The Z Transform The Inverse of Z Transform The Prosperity of Z Transform System Function System Function.
Lecture 7: Basis Functions & Fourier Series
Properties of the z-Transform
Lecture 7: Z-Transform Remember the Laplace transform? This is the same thing but for discrete-time signals! Definition: z is a complex variable: imaginary.
The Z-Transform.
CHAPTER 5 Z-Transform. EKT 230.
3.1 Introduction Why do we need also a frequency domain analysis (also we need time domain convolution):- 1) Sinusoidal and exponential signals occur.
Recap: Chapters 1-7: Signals and Systems
EE Audio Signals and Systems
Everything You Ever Wanted to Know About Filters*
CT-321 Digital Signal Processing
The Z-Transform of a given discrete signal, x(n), is given by:
Research Methods in Acoustics Lecture 9: Laplace Transform and z-Transform Jonas Braasch.
Chapter 5 DT System Analysis : Z Transform Basil Hamed
Z TRANSFORM AND DFT Z Transform
1 Z Transform Dr.P.Prakasam Professor/ECE 9/18/2018SS/Dr.PP/ZT.
Discrete-Time Signal processing Chapter 3 the Z-transform
10.0 Z-Transform 10.1 General Principles of Z-Transform Z-Transform
Lecture 4: Linear Systems and Convolution
Presentation transcript:

EE-2027 SaS, L18 1/12 Lecture 18: Discrete-Time Transfer Functions 7 Transfer Function of a Discrete-Time Systems (2 lectures): Impulse sampler, Laplace transform of impulse sequence, z transform. Properties of the z transform. Examples. Difference equations and differential equations. Digital filters. Specific objectives for today: z-transform of an impulse response z-transform of a signal Examples of the z-transform

EE-2027 SaS, L18 2/12 Lecture 18: Resources Core material SaS, O&W, C10 Related Material MIT lecture 22 & 23 The z-transform of a discrete time signal closely mirrors the Laplace transform of a continuous time signal.

EE-2027 SaS, L18 3/12 Reminder: Laplace Transform The continuous time Laplace transform is important for two reasons: It can be considered as a Fourier transform when the signals had infinite energy It decomposes a signal x(t) in terms of its basis functions e st, which are only altered by magnitude/phase when passed through a LTI system. Points to note: There is an associated Region of Convergence Very useful due to definition of system transfer function H(s) and performing convolution via multiplication Y(s)=H(s)X(s)

EE-2027 SaS, L18 4/12 Discrete Time EigenFunctions Consider a discrete-time input sequence (z is a complex number): x[n] = z n Then using discrete-time convolution for an LTI system: But this is just the input signal multiplied by H(z), the z-transform of the impulse response, which is a complex function of z. z n is an eigenfunction of a DT LTI system Z-transform of the impulse response

EE-2027 SaS, L18 5/12 z-Transform of a Discrete-Time Signal The z-transform of a discrete time signal is defined as: This is analogous to the CT Laplace Transform, and is denoted: To understand this relationship, put z in polar coords, i.e. z=re j  Therefore, this is just equivalent to the scaled DT Fourier Series:

EE-2027 SaS, L18 6/12 Geometric Interpretation & Convergence The relationship between the z-transform and Fourier transform for DT signals, closely parallels the discussion for CT signals The z-transform reduces to the DT Fourier transform when the magnitude is unity r=1 (rather than Re{s}=0 or purely imaginary for the CT Fourier transform) For the z-transform convergence, we require that the Fourier transform of x[n]r -n converges. This will generally converge for some values of r and not for others. In general, the z-transform of a sequence has an associated range of values of z for which X(z) converges. This is referred to as the Region of Convergence (ROC). If it includes the unit circle, the DT Fourier transform also converges. Re(z) Im(z) 1  z-plane r

EE-2027 SaS, L18 7/12 Example 1: z-Transform of Power Signal Consider the signal x[n] = a n u[n] Then the z-transform is: For convergence of X(z), we require The region of convergence (ROC) is and the Laplace transform is: When x[n] is the unit step sequence a=1

EE-2027 SaS, L18 8/12 Example 1: Region of Convergence The z-transform is a rational function so it can be characterized by its zeros (numerator polynomial roots) and its poles (denominator polynomial roots) For this example there is one zero at z=0, and one pole at z=a. The pole-zero and ROC plot is shown here For |a|>1, the ROC does not include the unit circle, for those values of a, the discrete time Fourier transform of a n u[n] does not converge. Re(z) Im(z) 1 Unit circle a x

EE-2027 SaS, L18 9/12 Example 2: z-Transform of Power Signal Now consider the signal x[n] = -a n u[-n-1] Then the Laplace transform is: If |a -1 z|<1, or equivalently, |z|<|a|, this sum converges to: The pole-zero plot and ROC is shown right for 0<a<1 Re(z) Im(z) 1 Unit circle a x

EE-2027 SaS, L18 10/12 Example 3: Sum of Two Exponentials Consider the input signal The z-transform is then: For the region of convergence we require both summations to converge |z|>1/3 and |z|>1/2, so |z|>1/2

EE-2027 SaS, L18 11/12 Lecture 18: Summary The z-transform can be used to represent discrete-time signals for which the discrete-time Fourier transform does not converge It is given by: where z is a complex number. The aim is to represent a discrete time signal in terms of the basis functions (z n ) which are subject to a magnitude and phase shift when processed by a discrete time system. The z-transform has an associated region of convergence for z, which is determined by when the infinite sum converges. Often X(z) is evaluated using an infinite sum.

EE-2027 SaS, L18 12/12 Lecture 18: Exercises Theory SaS O&W: Matlab You can use the ztrans() function which is part of the symbolic toolbox. It evaluates signals x[n]u[n], i.e. for non-negative values of n. syms k n w z ztrans(2^n) %returns z/(z-2) ztrans(0.5^n) %returns z/(z-0.5) ztrans(sin(k*n),w) % returns sin(k)*w/(1*w*cos(k)+w^2) Note that there is also the iztrans() function (see next lecture)