結構動力分析 Structural Dynamic Analysis Chapter 15 結構動力分析 Structural Dynamic Analysis
Contents 15.1 何謂動力分析? What Are Dynamic Analyses? 15.2 解題方法 15.1 何謂動力分析? What Are Dynamic Analyses? 15.2 解題方法 Solution Methods 15.3 質量與阻尼 Mass and Damping 15.4 實例:圓柱形子彈的撞擊模擬 Example: Copper Cylinder Impacting on a Rigid Wall 15.5 動態負載 Dynamic Loads 15.6 初始條件 Initial Conditions 15.7 積分時間間隔 Integration Time Steps 15.8 練習題:火箭的飛行 Exercise: Rocket Flight
何謂動力分析? What Are Dynamic Analyses? 第15.1節 何謂動力分析? What Are Dynamic Analyses?
Dynamic Effects Inertia force Damping force Elastic Force External force Dynamic Effects
15.1.1 Transient Dynamic Analysis
15.1.2 Modal Analysis (1/3)
15.1.2 Modal Analysis (2/3)
15.1.2 Modal Analysis (3/3) Avoid resonance Exploit resonance Assess structural stiffness Structural modal degrees of freedom Further dynamic analyses etc.
15.1.3 Harmonic Response Analysis
第15.2節 解題方法 Solution Methods
Solution Methods for Equation of Motion Direct Integration Mode Superposition Implicit Explicit Reduce Full
15.2.1 Direct Integration Implicit method (ANSYS) Explicit method (LS-DYNA)
15.2.2 Implicit vs. Explicit Methods Implicit method Explicit method
15.2.3 Mode Superposition Method
15.2.4 Reduced Method where
15.2.5 Methods for Nonlinear Dynamic Analysis For nonlinear analysis, the only methods applicable is DIRECT INTEGRATION method. Reduced method can not be used for nonlinear analysis. Either implicit or explicit methods can be used.
第15.3節 質量與阻尼 Mass and Damping
15.3.1 Consistent vs. Lumped Mass Matrices Consistent mass matrix Lumped mass matrix
15.3.2 Damping Damping effects is the total of all energy dissipation mechanisms Hysteresis (solid damping) Viscous damping Dry-friction (Coulomb damping)
15.3.3 Idealization of Structural Damping Structural dampings are usually small (2%-7%). Equivalent viscous damping is assumed in ANSYS, i.e.,
15.3.4 How ANSYS Forms Damping Matrix? Alpha damping Beta damping Material dependent beta damping Element damping matrices Frequency-dependent damping matrix
實例: 圓柱型子彈的撞擊模擬 Copper Cylinder Impacting on a Rigid Wall 第15.4節 實例: 圓柱型子彈的撞擊模擬 Copper Cylinder Impacting on a Rigid Wall
15.4.1 Problem Description x y L D Initial Velocity Vo
15.4.2 Modeling Consideration Material: bilinear plastic model. VISCO106 (2D viscoplastic solid) is used. Use axisymmetric model.
15.4.3 ANSYS Procedure (1/4) 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 FINISH /CLEAR /TITLE, UNITS: SI /PREP7 ET, 1, VISCO106,,, 1 MP, EX, 1, 117E9 MP, NUXY, 1, 0.35 MP, DENS, 1, 8930 TB, BISO, 1 TBDATA,, 400E6, 100E6 TBPLOT, BISO, 1 RECTNG, 0, 0.0032, 0, 0.0324 LESIZE, 1,,, 4 LESIZE, 2,,, 20 MSHAPE, 0, 2D MSHKEY, 1 AMESH, ALL FINISH
15.4.3 ANSYS Procedure (2/4) 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 /SOLU ANTYPE, TRANS TRNOPT, FULL NLGEOM, ON IC, ALL, UY, 0, -227 NSEL, S, LOC, X, 0 D, ALL, UX, 0 NSEL, S, LOC, Y, 0 D, ALL, UY, 0 NSEL, ALL /PBC, U,, ON EPLOT TIME, 80E-6 DELTIM, 0.4E-6 KBC, 1 OUTRES, ALL, 4 SOLVE FINISH
15.4.3 ANSYS Procedure (3/4) 44 45 46 47 48 49 50 51 52 53 54 55 56 57 /POST26 TOPNODE = NODE(0,0.0324,0) NSOL, 2, TOPNODE, U, Y, DISP DERIV, 3, 2, 1,, VELO /GRID, 1 /AXLAB, X, TIME s /AXLAB, Y, DISPLACEMENT m PLVAR, 2 /AXLAB, Y, VELOCITY m/s PLVAR, 3 FINISH
15.4.3 ANSYS Procedure (4/4) 59 60 61 62 63 64 65 /POST1 SET, LAST PLDISP, 2 PLNSOL, EPTO, EQV ANTIME, 30
第15.5節 動態負載 Dynamic Loads
Dynamic Loads: An Example 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 /SOLU ... F, ... ! 22.5 at the nodes TIME, 0.5 ! Ending time DELTIM, ... ! Integration step KBC, 0 ! Ramped loading AUTOTS, ON ! Option OUTRES, ... ! Option SOLVE ! Load step 1 F, ... ! 10 at the nodes TIME, 1 ! Ending time SOLVE ! Load step 2 FDELE, ... ! Zero the force TIME, 1.5 ! Ending time KBC, 1 ! Stepped loading SOLVE ! Load step 3 0.5 1.0 1.5 Time (s) Force (N) 22.5 10
初始條件 Initial Conditions 第15.6節 初始條件 Initial Conditions
15.6.1 Example: An Stationary Plate Subjected to an Impulse Load This is the default initial condition. No input is needed.
15.6.2 Example: Initial Velocity on a Golf Club Head This simple initial condition can be specified by using IC command. NSEL, ALL IC, ALL, UY, 0, V0
15.6.3 Example: Plucking a Cantilever Beam 01 02 03 04 05 06 07 08 09 10 11 12 13 14 /SOLU ANTYPE, TRANS ... TIMINT, OFF ! Transient effects off TIME, 0.001 ! Small time interval D, ... ! Apply displacement at desired nodes KBC, 1 ! Stepped loads NSUBST, 2 ! To avoid non-zero velocity SOLVE TIMINT, ON ! Transient effects on TIME, ... ! Actual time at end of load DDELE, ... ! Delete the applied displacement
15.6.4 Example: Dropping an Object from Rest 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 /SOLU TIMINT, OFF ! Transient effects off TIME, 0.001 ! Small time interval NSEL, ... ! Select all nodes on the object D, ALL, ALL, 0 ! Temporarily fix them NSEL, ALL ACEL, ... ! Apply acceleration KBC, 1 ! Stepped loads NSUBST, 2 ! To avoid non-zero velocity SOLVE ! Load step 1 TIMINT, ON ! Transient effects on TIME, ... ! Actual time at end of load DDELE, ALL, ALL ! Release them SOLVE ! Load step 2
積分時間間隔 Integration time Steps 第15.7節 積分時間間隔 Integration time Steps
15.7.1 Response Frequency Response Time Minimum response time
15.7.2 Abrupt Changes in Loading 0.5 1.0 1.5 Time (s) Force (N) 22.5 10
15.7.3 Contact Frequency
15.7.4 Wave Propagation
15.8 Exercise: Rocket Flight y 140 in. Thrust Time 100 lb 1 sec. 1 2 3