Lecture 11: Cell Potentials Reading: Zumdahl 11.2 Outline –What is a cell potential? –SHE, the electrochemical zero. –Using standard reduction potentials.

Slides:



Advertisements
Similar presentations
Inorganic chemistry Assiastance Lecturer Amjad Ahmed Jumaa  Calculating the standard (emf) of an electrochemical cell.  Spontaneity.
Advertisements

Electrochemistry. Remember… Anode: electrode in the half-cell where oxidation takes place Metal electrode atoms are oxidized and become aqueous ions Anions.
Lecture 12: Cell Potentials Reading: Zumdahl 11.2 Outline –What is a cell potential? –SHE, the electrochemical zero. –Using standard reduction potentials.
Chapter 17 Electrochemistry
Galvanic Cells What will happen if a piece of Zn metal is immersed in a CuSO 4 solution? A spontaneous redox reaction occurs: Zn (s) + Cu 2 + (aq) Zn 2.
19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis Chapter.
Galvanic Cell.
Lecture 253/27/06 Bottle and Can drive today 11-3 Hagan Info Booth Seminar today at 4 pm.
Electrochemistry “It is the study of the interchange of chemical and electrical energy”
Electrochemical Cells (aka – Galvanic or Voltaic Cells) AP Chemistry Unit 10 Electrochemistry Chapter 17.
Standard Cell Notation (line notation)
Chapter 18 Electrochemistry. Redox Reaction Elements change oxidation number  e.g., single displacement, and combustion, some synthesis and decomposition.
ELECTROCHEMISTRY Chap 20.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
Chapter 20 Electrochemistry
Lecture 11: Electrochemistry Introduction
Lecture 10: Electrochemistry Introduction Reading: Zumdahl 4.10, 4.11, 11.1 Outline –General Nomenclature –Balancing Redox Reactions (1/2 cell method)
Lecture 244/1/05. Quiz 1) Balance the following redox equation: Ag(s) + NO 3 -  NO 2 (g) + Ag + (aq) 2) What is the oxidation number for Chlorine in.
Electrochemistry 18.1 Balancing Oxidation–Reduction Reactions
Chapter 18 Electrochemistry
Ch. 18 Electrochemistry Dr. Namphol Sinkaset Chem 201: General Chemistry II.
Electrochemical Reactions
Electrochemistry Chapter 19.
Chapter 20 – Redox Reactions One of the earliest recognized chemical reactions were with oxygen. Some substances would combine with oxygen, and some would.
 17.1 Explain how a non-spontaneous redox reaction can be driven forward during electrolysis  17.1 Relate the movement of charge through an electrolytic.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
8–1 Ibrahim BarryChapter 20-1 Chapter 20 Electrochemistry.
Electrochemistry Applications of Redox. Review l Oxidation reduction reactions involve a transfer of electrons. l OIL- RIG l Oxidation Involves Loss l.
Section 10.3—Batteries & Redox Reactions
CHEM Pharmacy Week 9: Galvanic Cells Dr. Siegbert Schmid School of Chemistry, Rm 223 Phone:
Electrochemistry and Redox Reactions. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
1 Chapter Eighteen Electrochemistry. 2 Electrochemical reactions are oxidation-reduction reactions. The two parts of the reaction are physically separated.
Electrochemistry The study of the interchange of chemical and electrical energy. Sample electrochemical processes: 1) Corrosion 4 Fe (s) + 3 O 2(g) ⇌
Chapter 20 Electrochemistry and Oxidation-Reduction.
Definitions of Oxidation-Reduction  Loss/Gain of electrons  Increase/Decrease of oxidation number  Determining oxidation numbers.
Electrochemistry Applications of Redox. Review l Oxidation reduction reactions involve a transfer of electrons. l OIL- RIG l Oxidation Involves Loss l.
CHM Lecture 23 Chapt 14 Chapter 14 – Fundamentals of Electrochemistry Homework - Due Friday, April 1 Problems: 14-4, 14-5, 14-8, 14-12, 14-15, 14-17,
Standard Voltages Reading: Masterson 18.2 Outline –What is a standard voltage (cell potential) –SHE, the electrochemical zero. –Using standard reduction.
Redox Reactions and Electrochemistry Chapter 19. Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
In a galvanic cell, the electrode that acts as a source of electrons to the solution is called the ___________; chemical change that occurs at this electrode.
Electrochemistry The study of the interchange of chemical and electrical energy.
Electrochemistry Electrochemical Cells –Galvanic cells –Voltaic cells –Nernst Equation –Free Energy.
Electrochemistry - Section 1 Voltaic Cells
Copyright © Houghton Mifflin Company. All rights reserved.17a–1.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Galvanic Cell: Electrochemical cell in which chemical reactions are used to create spontaneous current (electron) flow.
Electric energy Chemical energy Electrolysis Galvanic cell Chapter 8 Electrochemistry.
Batteries Electrochemical cells  Terms to know Anode Cathode Oxidation Reduction Salt Bridge Half cell Cell potential Electron flow Voltage.
Electrochemistry Chapter 17 “Leo” the lion says “ger” §LEO - Lose Electrons = Oxidation GER - Gain Electrons = Reduction §What are the half reactions.
Electrochemistry An electrochemical cell produces electricity using a chemical reaction. It consists of two half-cells connected via an external wire with.
1 © 2006 Brooks/Cole - Thomson OXIDATION-REDUCTION REACTIONS Indirect Redox Reaction A battery functions by transferring electrons through an external.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
CE Chemistry Module 8. A. Involves electron changes (can tell by change in charge) Cl NaBr 2NaCl + Br 2 B. Oxidation 1. First used.
Chapter 18 Electrochemistry Lesson 1. Electrochemistry 18.1Balancing Oxidation–Reduction Reactions 18.2 Galvanic Cells 18.3 Standard Reduction Potentials.
Redox Reactions and Electrochemistry 9.3 Oxidation Numbers ( only first half, assigning ox numbers) 10.1 Galavanic or Voltaic Cells a)Anode/Cathode/Salt.
Electrochemistry. #13 Electrochemistry and the Nernst Equation Goals: To determine reduction potentials of metals To measure the effect of concentration.
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
H.W. # 22 Study pp (sec – 18.3) Ans. ques. p. 879 # 41,
17.1 Galvanic Cells (Batteries)
Electrochemistry Review
Zn(s) + CuSO4(aq)→ ZnSO4 (aq) + Cu(s)
Chp 17 Electrochemistry.
Electrochemistry / Redox
Electrochemistry.
Harnessing the changes in oxidation and reduction
3- Oxidation-Reduction (Redox) titration
Voltaic (Galvanic)Cells
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
Electrochemistry Kenneth E. Schnobrich.
Presentation transcript:

Lecture 11: Cell Potentials Reading: Zumdahl 11.2 Outline –What is a cell potential? –SHE, the electrochemical zero. –Using standard reduction potentials.

Reminder “Redox” Chemistry: Reduction and Oxidation Oxidation: Loss of electrons (increase in oxidation number) Reduction: Gain of electrons (a reduction in oxidation number) Electrons are transferred from the reducing agent to the oxidizing agent Electrons are transferred from the species being oxidized to that being reduced.

Galvanic Cells (cont.) 8H + + MnO e - Mn H 2 O Fe 2+ Fe 3+ + e - x 5

Galvanic Cells (cont.) Galvanic Cell: Electrochemical cell in which chemical reactions are used to create spontaneous current (electron) flow

Galvanic Cells (cont.) Anode: Electrons are lostOxidation Cathode: Electrons are gainedReduction

Cell Potentials In a galvanic cell, we had a species being oxidized at the anode, a species being reduced at the cathode, and electrons flowing from anode to cathode. The force on the electrons causing them to full is referred to as the electromotive force (EMF). The unit used to quantify this force is the volt (V) 1 volt = 1 Joule/Coulomb of charge V = J/C

Cell potential and work From the definition of electromotive force (emf): 1 J of work is done when 1 C of charge is transferred between a potential difference of 1 V. Volt = work (J)/charge (C)

Cell Potentials (cont.) We can measure the magnitude of the EMF causing electron (i.e., current) flow by measuring the voltage. AnodeCathode e-e-

1/2 Cell Potentials What we seek is a way to predict what the voltage will be between two 1/2 cells without having to measure every possible combination. To accomplish this, what we need to is to know what the inherent potential for each 1/2 cell is. The above statement requires that we have a reference to use in comparing 1/2 cells. That reference is the standard hydrogen electrode (SHE)

1/2 Cell Potentials (cont.) Consider the following galvanic cell Electrons are spontaneously flowing from the Zn/Zn +2 half cell (anode) to the H 2 /H + half cell (cathode)

1/2 Cell Potentials (cont.) We define the 1/2 cell potential of the hydrogen 1/2 cell as zero. SHE P(H 2 ) = 1 atm [H + ] = 1 M 2H + + 2e - H 2 E° 1/2 (SHE) = 0 V

1/2 Cell Potentials (cont.) With our “zero” we can then measure the voltages of other 1/2 cells. Zn Zn e - E° SHE = 0 V In our example, Zn/Zn +2 is the anode: oxidation 2H + + 2e - H 2 Zn + 2H + Zn +2 + H 2 E° cell = E° SHE + E° Zn/Zn+2 = 0.76 V 0 E° Zn/Zn+2 = 0.76 V

Standard Reduction Potentials Standard Reduction Potentials: The 1/2 cell potentials that are determined by reference to the SHE. These potentials are always defined with respect to reduction. Zn e - ZnE° = V Cu e - CuE° = V Fe +3 + e - Fe +2 E° = 0.77 V

Standard Potentials (cont.) If in constructing an electrochemical cell, you need to write the reaction as a oxidation instead of a reduction, the sign of the 1/2 cell potential changes. Zn e - ZnE° = V Zn Zn e- E° = V 1/2 cell potentials are intensive variables. As such, you do NOT multiply them by any coefficients when balancing reactions.

Writing Galvanic Cells For galvanic cells, E cell > 0 In this example: Zn/Zn +2 is the anode Cu/Cu +2 is the cathode Zn Zn e- E° = V Cu e - CuE° = 0.34 V

Writing Galvanic Cells (cont.) Zn Zn e- E° = V Cu e - CuE° = 0.34 V Cu +2 + Zn Cu + Zn +2 E° cell = 1.10 V Notice, we “reverse” the potential for the anode. E° cell = E° cathode - E° anode

Writing Galvanic Cells (cont.) Shorthand Notation Zn|Zn +2 ||Cu +2 |Cu AnodeCathode Salt bridge

Predicting Galvanic Cells Given two 1/2 cell reactions, how can one construct a galvanic cell? Need to compare the reduction potentials of the two half cells. Turn the reaction for the weaker reduction (smaller E° 1/2 ) and turn it into an oxidation. This reaction will be the anode, the other the cathode.

Predicting Galvanic Cells (cont.) Example. Describe a galvanic cell based on the following: Ag + + e - AgE° 1/2 = 0.80 V Fe +3 + e - Fe +2 E° 1/2 = 0.77 V Weaker reducing agent – turn it around Ag + + Fe +2 Ag + Fe +3 E° cell = 0.03 V E° cell > 0….cell is galvanic

Another Example For the following reaction, identify the two half cells, and use these half cells to construct a galvanic cell 3Fe +2 (aq) Fe(s) + 2Fe +3 (aq) oxidation reduction Fe +2 (aq) + 2e- Fe(s) E° = V Fe +3 (aq) + e- Fe +2 (aq)E° = V

Another Example (cont.) Fe +2 (aq) + 2e- Fe(s) E° = V Fe +3 (aq) + e- Fe +2 (aq)E° = V weaker reduction – turn it around Fe(s)Fe +2 (aq) + 2e- E° = V 2 x 2Fe +3 (aq) + Fe(s) 3Fe +2 (aq)E° cell = 1.21 V